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ABSTRACT

The major problem addressed by this research is how to improve an existing real-time

software system's readability, maintainability, stability and portability using reengineering

techniques. A fundamental portion of the Model-based Mobile robot Language (MML)

was the real-time system chosen as the basis for this study.

The approach taken was to create a new system design. The new design was based on

system specifications obtained by conducting static and dynamic analysis on the existing

system.

The results are that a new core system was implemented using a design tha -%Iub.i V

creating independent software sub-systems while encapsulating data. Hardware

dependencies were localized and assembly code minimized. The new system is easier to

understand and modify and is portable to other hardware platforms.
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I. INTRODUCTION

A. PROBLEM STATEMENT

The problem this thesis solves is how to reengineer MML, a real-time cortrol system

for the Yamabico- 1 autonomous robot, while improving system stability, maintainability

and portability.

B. BACKGROUND

MML is a real-time system under development for the Yamabico- 1 robot. The goal

of the project is to create a robot-independent, high-level language for mobile robot control.

The language contains sets of library functions to handle geometry, motion, sonar, and 1/O.

These routines could then be used by developers to program a robot's movement without

the requirements of low-level motion control understanding.

In the class of motion control functionality, MML originally used a sequence of

configurations to describe a vehicles desired path. A configuration represents the robot's

current position and orientation in a 2D world. Current research involves expanding the

language to describe motion control using directed path segments as well. Each directed

path is defined by a point that lies on the segment, the orientation of the segment in the 2D

world and the segment's curvature.

The status of the MML system typifies that of many software systems in existence

today. Roughly 50 to 80 percent of a software organization's resources are spent

rridntaining existing systerrs. Many of these systems were developed without complete

specifications or documentation by analysts and programmers who are no longer with the

organization. Analysts and programmers with incomplete system knowledge are then

required to perform the necessary maintenance [Yourdon 93].

As a research system, MML evolved through modifications made from several

graduate students. Many of these changes were unstructured and made use of global
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variables. At times, particular functions or sections of code were altered simultaneously by

different developers. The result is an unstable system that is extremely difficult to maintain.

Some organizations are investing resources into software reengineer tcchniques,

hoping to reduce maintenance efforts and costs dedicated to these existing systems. There

are three fundamental approaches to reengineering a system. The first technique, called

restructuring, reorganizes unstructured source code L,'to a modular form. The new form

remains functionally equivalent to the older version. The second method is tr' reengineer

the system. The goal of this plan is to replace existing code with newer versions, possibly

written in a higher level language. This is done gradually by the maintenance programmers

each time maintenance is required. Reverse engineering is the third technique. The

objective of this procedure is to reconstruct the design, and/or the specifications from the

existing source code [Yourdon 93].

C. OVERVIEW

This thesis shows a procedure for reengineering an existing real-time system, MML-

10. The first step in this process is to determine the functionality of the existing system.

Chapter two analyzes MML-lO's software system, while chapter three covers the hardware

components of the Yamabico- 11 robot. Generating a new design is the second step and is

covered in chapter four. The third step is to implement and test the new design. Chapter five

detaiLs Yamabi•o-1 l's software development environment. The design implementation

and results are discussed in chapter six. Chapter seven presents the conclusions and future

recommendations.



II. YAM " ilCO SOFTWARE SYSTEM ARCHITECTURE

Prior to reengineering an existing software system, the maintenance programmer must

have a thorough understanding of that system's logical design. Unless the programmer was

involved with the system's original implementation, this is only achieved by reviewing the

software's specifications and/or documentation. For systems lacking complete

specifications and /or documentation, such as MML, it may be necessary to perform reverse

engineering techniques to recover this information. Since current CASE technology

focuses on developing new systems, these tools can provide limited support, but not at a

high level [Yourdon 93].

Two of the most effective methods for reconstructing system specifications and/or

documentation are static and dynamic analysis. The results of these two techniques form a

logical description of the system. This description can then be translated into physical

depictions, such as data flow diagrams or state transition diagrams [Yourdon 89]. The

context diagram of the current lIML system is shown in Figure 1.

Dual Axis
Controller

Wheel Motor
Encoders Control

Sonar • . interrupt

Figure 1: MML System Overview
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A. STATIC ANALYSIS OF MML-10

Static analysis is the process of gaining an understanding of a software system through

source code examination. The goal of this phase is to recover enough information to create

a logical picture of the existing system. One important technique involves the tracing of

function and procedure calls. When performing this procedure, it is not desirable to produce

a complete or detailed trace as this only wastes time and resources.

Another important technique involves variable tracing. The emphasis during this

operation should be on tracing parameters passed to functions and procedures, any values

they return and references to global variables.

1. User vs. Kernel

As shown in Figure 2, the MML system is composed of two distinct parts: the

kernel module and a user program. The kernel contains the low level routines required to

Wheel
EncodersMotor

Sonar MML Commands
ReturnnsKenlUr

Sonar %' %%.. -ý
Control " "\ Control to

%\ User Program

Input/ Interrupt
Output Signals

Figure 2: MML System

control movement and to perform input/output. The low level details are hidden from

developers through the MML command set. A user program consists of MML command

calls and C constructs to describe one or more motion behaviors. Each command either

requests status information from the kernel or commands a desired behavior [Scott 93].
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Each module is downloaded to the robot separately. Robot operation is only

possible after both modules are loaded. Program execution starts with the kernel. The

kernel initializes the sub-systems and then passe- control to the user program. The user

program maintains primary control until termination. However, the kernel's control

processes will interrupt execution for short durations. This design allows a user to quickly

alter the behavior of the robot by simply changing the user program used by the kernel.

2. Kernel System

Figure 3 is a modified data flow diagram showing the kernel as a collection of

control type processes. Each control process, indicated by a dashed circle, is associated

with a distinct hardware generated interrupt. The interrupts are prioritized through the

hardware's configuration. The current CPU provides eight priority levels. When an

interrupt is generated, the associated control process assumes control of the CPU, provided

it is not interrupting a higher level process. Otherwise, it will wait until all higher priority

interrupts are serviced before takitig control. The interrupt level of each process is indicated

by the value within parentheses.

Since motion control is responsible for maneuvering the robot, receives the

highest priority given to the control processes, interrupt level four. It controls movement

by first estimating the robe:'s current odometry configuration through dead reckoning. This

estimate is then used to calculate the necessary linear and rotational velocities. These

calculations are based on the motion required to follow the current path segment. Finally,

these velocities are translated into pulse width modulation commands and sent to the

motors controlling the robot's wheels. This process, called the motion control cycle, repeats

every 10 milliseconds and requires approximately 2.5 milliseconds to execute

[MacPherson 93].

The input/output process receives the next highest priority at interrupt level

three. It uses interrupt driven input and output to effect information transfers between the

5



User
Program

Control to User Status
Program Information User

Program

User MML
Interrupt from Program I/O Commands
Serial Board

Initialization

InSn Sonar V Motion
Process(2) Control1.1/0 Process (4)/

Sonar Motor
Control iControl

Sonar / Wheel
Returns Global Variables / Encoders

I

I/0 Through Interrupt from
Serial Boards Serial Board

Figure 3: Kernel System
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robot and the onboard console device. It also controls the transfer of data between the robot

and a Unix workstation [MacPherson 93].

Interrupt priority level two signals the robot's sonar process. This process

collects sonar range information used for obstacle avoidance. The process requires 240

microseconds to complete and is repeated every 24 milliseconds [DeClue 93].

3. Motion Control Process

As depicted in Figure 4, the major responsibilities of motion control are

processing MML commands and pathtracking. Each MML command is characterized as

Interrupt Wheel
from Serial Encoders

Board

Sequential and 
/

Immediate
I Commands

initialize/
Motion Command Motion
Control Processing I Control /

Parameters 9

Pulse Width
Modulation Values

Global Variables

Figure 4: Motion Control Process

either an immediate or sequential command. Both types induce changes to one or more

control parameters. Immediate commands induce the changes at the instant they are called
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from within the user program. However, when a sequential command is called from the

user program, it is added to an instruction queue. Each sequential command is then

executed only after the previous sequential command is finished. Immediate command

execution and storage of sequential commands into the instruction queue is independent

from the motion control cycle.

For path tracking, a three step process is executed every motion control cycle.

First, Yamabico updates its current odometry configuration, position and orientation, by

reading hardware registers associated with wheel movement. Next, this information is used

to calculate the robot's next intended movement using control rules. Early motion

description methods in MML compared the current configuration against a reference

configuration [Kanayama 91]. However, recent research has proven that smoother motion

control is achieved by comparing the current configuration against a reference path

segment [MacPherson 93]. Finally, the intended movement is translated into pulse width

modulation values and sent to the motor control board.

A path segment is either a straight line, circular arc, parabola or cubic spiral.

Yamabico will track a sequence of these path segments added to the instruction queue by

calculating a transition point from one segment to the next. Once the transition point is

reached, the robot will begin following the next path segment.

A secondary task of motion control is data logging. This purpose of this function

is to record control data every motion control cycle. The collected data is used by the

system programmers for debugging.

4. 11O Process

As previously mentioned, the input/output process is responsible for transferring

information between the robot and either the Unix workstation or the console.

Communications between the robot and the Unix workstation are accomplished by polling

a serial port mapped to a specific memory location.

8



Transferring information with the console is also memory mapped, however this

process is interrupt driven. During output, data is stored in a 1024 character circular buffer.

The interrupt sequence is then initiated by sending a null character directly to the console.

After the character is received by the console, an interrupt causes the next character in the

buffer to be sent. After this character is written to the console, another interrupt is

generated. This process continues until the buffer is empty and a command to terminate the

interrupt cycle is sent to the port. Input is handled in a similar fashion.

5. Sonar Process

As mentioned earlier, the sonar process is responsible for recording sonar range

returns. This information is made available to user programs for obstacle avoidance. T'.

returns can also be used for automated cartography by building line segments using a least

squares linear fitting algorithm [DeClue 93][MacPherson 931.

B. DYNAMIC ANALYSIS OF MML-10

When static analysis provides insufficient insight to a system's behavior, dynamic

analysis should be used. Dynamic analysis is the process of tracing a system during

execution. Using dynamic analysis, a maintenance programmer can follow the path of

execution, monitor access to a particular memory location or alter the storage values. This

is particularly useful when trying to locate the cause of a system crash [Yourdon 93].

Tracing MML-10 has proven to be very difficult. Two reasons are the system's low

readability and high degree of coupling. This is the result of using inappropriate modularity

techniques. These and other system characteristics are described below. Another reason is

the difficulty associated with using a debugger due to the timing constraints of a real time

system.

C. SYSTEM CHARACTERISTICS

A by-product of conducting static and dynamic analysis is knowledge of a system's

software characteristics. Software characteristics are those attributes used to describe the

9



quality of a system's design and implementation. The following list of attributes is used to

describe the internal makeup of a system and is directly related to the effort required to

perform system maintenance.

1. Coupling

When one module references a symbolic address defined outside of that module,

a connection (or interdependency) is created between the module with the reference and the

module with the definition. Coupling describes the types and strength of these connections

between modules. References to internal data elements or data structures is known as

common coupling since code segments are referencing a common data area. Another form

of coupling is control coupling. This exists when control switches such as flags are used

between modules. The purpose of these flags is to change or modify the behavior or actions

of a routine. Low coupling exists when references between modules are limited to

procedure and/or function names.

As coupling increases, a system is more difficult to understand and maintain.

Therefore, it is desirable to reduce coupling by reducing the references to another module's

internal elements. One method for reducing common coupling is to bring the externally

referenced elements inside the module. However, this only works if the elements are not

referenced by other sections of code. Control coupling can be reduced by splitting the

routines effected by the flags into seperate procedures or functions. Then the calling routine

would make seperate calls to the new routines [Stevens 74].

2. Cohesion

When more than one code segment references the same element, these segments

are related. Cohesion measures the strength of relationships between code segments within

the same module. It is desirable that modules exhibit strong cohesion. For that reason,

related segments should be collected in the same module that contains the referenced

element [Stevens 74].
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3. Modifiability

A system is modifiable if changes can be made to one segment of code without

generating adverse side effects in another segment. Another name for this attribute is

stability. The degree that a system is modifiable is directly related to the system's measure

of coupling and cohesiveness. A modifiable system is produced through the application of

sound implementation techniques to a solid design [Yourdon 801. Once produced, a

modifiable system is easily changed and maintained.

4. Modularity

Modularity is defined as the partitioning of the system into small segments.

Creating a modular system also begins during the design phase. A major goal of this

process is to design each segment around a particular logical function performed by the

system [Parnas 79]. This produces a system exhibiting strong cohesion. Another goal is to

minimize the amount of coupling. This is done by using a clean and concise interface with

data encapsulation; the hiding of data elements. The success of this process is measured

through the ease of implementation and maintenance.

5. Readability

Occasionally, original developers are no longer available after a system's

completion [Yourdon 80]. For this reason, systems need to exhibit the same behavior

during operation as expressed in the sourc: code. This characteristic is termed readability.

Small modules with independent, well defined and clearly documented behavior are the

most readable. Therefore it is important for modules to exhibit simplicity and consistency

[Scott 93].

6. Robustness

Systems that can detect errors (or exceptions) and recover are considered robust

or fault tolerant. This requires the addition of exception handling functions and procedures

11



to the system. These code segments allow the system to process exceptional conditions

such as division by zero or value out of limits [Scott 93].

D. CHARACTERISTICS OF MML-10

MML- 10 was an attempt to restructure the system by collecting -elated functions into

seperate modules. Although this strengthened cohesion, improvements were limited due to

the usage of global variables [Scott 93]. Almost all of the global variables are declared and

initialized in the module main.c. However, most global variables are actually used or

referenced in one or more different modules. There are also several instances in MML- 10

where global flags set in one module effect the behavior of a function in another. Collecting

the data elements into one common area also eliminated the requirements for clean

interfaces between modules. This has resulted in a tightly coupled system.

To reduce system coupling, the required global variables should be re-located to the

modules that reference them. These variables should then be encapsulated with the

development of module interfaces.

The MML-10 source code is difficult to read. One reason is poor documentation.

MML-10's comments are minimal and often give incomplete descriptions of the code.

Also, the short motion control theory nomenclature is used for the system's global variable

names. Source code documentation can be improved using a combination of well placed,

informative comments and descriptive symbolic names.

Improper use of pointers is another reason MML- 10 tends to be confusing and difficult

to understand. In many places, global pointers reference global variables while some

assignments are improperly type casted. In other places, pointers are used in a cryptic

manner. For example, instead of using standard indexing to sequence through an array,

pointers are used. These practices should be avoided.

One of the goals of the MML project was to modify the system, making it easily ported

to other hardware platforms. This involved converting the current system to a portable

12



language, such as ANSI C or C++, while minimizing the amount of required assembly

code. It also implies that hardware dependencies should be local to a few modules.

However, attempts to reengineer MML-10 by replacing existing non-ANSI C or

assembly code with ANSI C failed. For example, Figure 5 shows the addition of two

Module main.asm.s

.Jong SEAN

movl #0 SEAN

Figure 5: Introduction of a Unique Variable

statements to an assembly language module belonging to the system. The first statement,

.long SEAN, simply introduces a unique variable, while the second statement, movl

#O,SEAN, initializes it. Prior to the change, the system executed properly. After adding the

two program statements, the resulting system would no longer function. No other changes

were made. Similar results occurred when adding or deleting output statements. To create

a stable system, MML should be re-implemented using solid engineering techniques.

13



III. YAMABICO HARDWARE ARCHITECTURE

The Yamabico- 11 is a collection of hardware sub-systems assembled on an aluminum

frame. As shown in Figure 6, these hardware sub-systems include: a CPU system, a wheels

CPU
Motherboard

Swith I1NB RAM

S Dual Axis Wbe Sse
ControllerWheel System

VME

BUS Sonar Board Sonar System

Unix Host
Serial System Sse

with 2 Serial
SA ~~Boards d[

Console System

Figure 6: Yamabico-ll Computer Architecture

system, a sonar system, a serial system, a Unix host system and a console system used as

the communications interface.

The chassis houses two 12-volt rechargeable batteries. These batteries power all sub-

systems except for the console. The chassis rests on four spring-loaded castering wheels for

balance while two wheels attached to the chassis in a differential arrangement control robot

movement The actual robot is shown in Figure 7.

14



Figure 7: Yamabico-lI Mobile Robot
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A. THE CPU SYSTEM

The current CPU sub-system uses a VME7120 32-bit motherboard. The board contains

a Motorola based MC68020 CPU operating at 16MHz and a MC68881 co-processor for

floating point arithmetic [VCM 86]. The system also includes one megabyte of dynamic

memory and a ROM based VME7920 Debugging Package. The debugger is used as the

monitor program when the system is powered on [VDP 86]. An upgrade of the sub-system

to a SPARC-4 processor board containing 16 megabytes of dynamic memory is planned.

One of the main functions of the CPU is to manage the interrupt driven requests from

the other subsystems. As mentioned earlier, the MC68020 CPU provides eight levels of

interrupts. The assignment of each interrupt level is summarized in Table 1 [MacPherson

931. To handle the interrupts, the MC68020 uses a special purpose register to hold the

TABLE 1: MML SYSTEM TASK PRIORITY

Interrupt Interrupt Function Interrupt Type Vector Duration
Level Source (p4s)

7 Stop Button Reset Asynchronous

6 - Not Used -

5 - Not Used - -

4 Serial Board I Motion Synchronous 64 2500

3 Serial Board 0 Console Asynchronous 65 variable

2 Sonar Board Sonar Synchronous 66 240

1 Serial Board 0 Debugger Synchronous 67

0 - User Program None -

address of a vector table. This table is essentially an array of 256 elements, where each

element can store the address of an exception/interrupt handler. When an exception/

interrupt is signaled, the CPU saves the current status word and the status word is modified

for interrupt processing. Next, an index value into the vector table is obtained from the

interrupting device. Then the current context is saved on a supervisor stack. Finally,
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execution resumes at the address located in the vector table cell specified by the index

value. When the interrupt handler is finished, the rte assembly instruction restores the

processor to the state prior to the interrupt [MC68020 851.

B. THE SERIAL SYSTEM

The serial sub-system is composed of two VME8300 Quad Serial Port Boards. Each

board contains a VME bus interface and two serial communications controllers. Each

controller manages two serial ports. Associated with each port is a timer/counter that may

be used for baud rate generation or asynchronous/synchronous interrupt control. There also

exists a fifth timer/counter that is primarily used to generate synchronous interrupts.

However, each board contains only two latches for a maximum configuration of two levels

of interrupts per board [VQS 86]. Figure 8 shows the conceptual layout of a serial board.

1 T I L

Controller I Controller 2

Figure 8: Serial Board Conceptual Diagram

The ports and timers are configured by reading from and writing to registers located

on the serial boards. These registers are memory mapped and are accessed through absolute

addressing.

C. THE WHEELS SYSTEM

The wheel sub-system consists of two independent DC motors that drive the two

wheels in either the forward or reverse direction, controlling the robot's movement.
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Braking can also be applied tc the motors. Each motor has an associated shaft encoder that

is used to determine distance traveled, speed, and to make odometry correction.

A dual axis controller board serves as the interface between the wheel motors, the shaft

encoders and the CPU. It contains memory mapped registers that are accessed through

absolute addressing. These registers are used to enable/disable the motors, read the shaft

:ncoders and to send pulse width modulation values. A pulse width modulation value is an

eight-bit integer that determines the strength of a short electrical pulse sent to a motor to

create movement. Since each pulse is short, constant pulse generations are required to

produce smooth, continuous motion.

D. THE SONAR SYSTEM

The sonar sub-system contains twelve 40kHz ultrasonic sensors. These sensors are

used to gather sonar return information from the forward/rear, lateral or diagonal

directions. Three control boards are used to control the sensors and collect return

information. A VME bus card is used as the interface between the control cards and the

CPU [DeClue 93].

E. THE UNIX HOST SYSTEM

The Unix host system is a Sun-3 workstation using SunOS 4.1. 1. It is connected to the

robot through a serial port on the first serial board. The host is used to develop software that

will be transferred to the robot. It also accepts collected data from the robot. The interface

is easily disconnected during robot operation, allowing full motion freedom.

F. THE CONSOLE SYSTEM

A Macintosh Power Book is the main component of the console sub-system and is the

only input/output device when Yamabico operates as a self-contained robot. The Power

Book is connected to the robot through a serial port on the second serial board and provides

the interface between the user and the robot's debug monitor through a software

communications package. It also has its own rechargeable power supply.
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IV. SYSTEM DESIGN

A. DESIGN GOALS

Initially, the goal of the reengineering process was to add structure to MML-10,

replacing non-ANSI C code with ANSI C. However, it was soon realized that a

monumental effort would be required. Therefore, a plan to re-design the core system was

initiated.

Since MML is used in conducting research by many people, the new design was based

on three requirements. First, the system must be easy to read and easy to maintain.

Therefore, modularity is a primary goal of the new design. As discussed earlier, a modular

system exhibits strong cohesion and loose coupling.

MML will see many modifications and changes as the system continues to evolve and

expand. Therefore, the second requirement is system stability. The creation of a stable

system begins by applying solid implementation techniques to a modular design. Some

important techniques that prornote stability are discussed in Chapter VI.

The third requirement is portability. When the Yamabico's processor is upgraded, the

new software should only require minor changes. This implies that the assembly code

should be minimized and the hardware dependencies localized. A portable system also

promotes software re-use for future platforms.

A secondary objective is to create an object oriented type design. This will encourage

the smooth transition to an object oriented language such as C++.

B. MODELING NOTATION

When modeling software, the goal of the notation is to produce a picture of the

software system that is clear and easy to interpret. It must simplify the system by

highlighting the important features, while hiding the details [Constantine 941.

The notation chosen to model the new design is shown in Figure 9. A software system

or hardware component is represented by a solid box. Interrupt handlers are shown as
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dashed circles while solid circles indicate system processes. In some systems, the interface

is not yet finalized. For this reason a single solid circle may represent more than one

process. Solid arrows depict messages between systems and/or processes, while dashed

arrows display the signals used to activate interrupt handlers and system control processes.

Finally, data stores are indicated by two solid parallel lines.

System/Hardware interrupt Handier
Component I

System/Process No.. Control Signal - - -

One or More DatStore
Processes 0

Figure 9: Design Notation

C. SYSTEM DESIGN

1. System Overview

A mod ,1 of MML is illustrated in Figure 10. This diagram depicts MML as a

network of five sub-systems: a CPU system, a motion control system, a terminal system, a

sonar system and a user program. This overview is slightly more complex than the views

depicted in Figure 1 and Figure 2. However, this approach helps produce the desired object

oriented design where each sub-system is treated as an object. This approach results in a

simpler system design overall.

2. CPU System

The CPU system, shown in Figure 11, is the primary system. One objective of

this system is to initialize the other sub-systems. If the system is implemented with an
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•{Control

System MML Commands/
Status Requests

Motion Host

/ / Control .- "" J Program
/ /" ~~to User _.-"" 1

C os, / / MML Commands/
Systm OuputStatus Requests

"S"Inal I

" FgConsole 1i : Sysm System

Output •NContr ol I /

S1/0

System

Figure 10: System Network

object oriented language, C++ for example, this can be accomplished when the object is

instantiated. However, if a non-object oriented language is used, such as ANSI C, then each

sub-system is required to have an initialization process. In the later case, the CPU system

must specifically call these initialization routines for each sub-system.

Since the interrupt control mechanism is CPU dependent, the interrupt handling

routines and the mechanism setup is part of the CPU system. The objective of this operation
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Console Process

SInitialize

Host Serial Sonar CnrltOutput System Board Control to

User Program

Level 4 / \ Level 3 \ Level 2
Interrup \ Interrupt Interrupt

/ Motion / Output f Sonar
Interrupt I | Interrupt | Interrupt IHandler / Handler / Handler /

I I I
I I I

Signal Signal Signal
Motion Output Sonar
Control Control Control

Figure 11: CPU System

is to match the interrupt handling functions to the appropriate interrupt signals. However,

the interrupt priority levels are still based on the hardware configuration.

The third function of the CPU system is to pass control to the user program. This

is done after the sub-systems have been initialized and the interrupt control process has

been properly established.

3. Serial System

Illustrated in Figure 12, the serial system shields the hardware details of the

VME8300 serial boards from the other sub-systems in MML. Each serial port or timer must

be properly initialized prior to its first use. This is accomplished through a pair of
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initialization processes. A set of interface routines are required by each port to read and

write character data. These interface routines are modeled after examples found in the

user's manual [VQS 86]. Since this system directly accesses the hardware, it must NOT be

optimized. If optimization techniques are used, the initialization routines will improperly

setup the ports.

Console Host

Port 1 Port 2 Set Port
1/0 1/0 Timer

Sonar Sonar
Board 0 Board 1

I I

I I

Level 3 Level 4
Interrupt Interrupt

Figure 12: Serial System

The VME8300 boards ability to generate synchronous interrupts is najor

benefit. They are required to generate control signals to activate other sub-systems. For this

reason the serial system is considered to be a component of the CPU system rather than an

MML sub-system (see Figure 11).
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4. Motion Control System

The motion control system depicted in Figure 13 serves two primary purposes.

First, it provides the interface for MML's immediate and sequential commands. Immediate

commands cause instantaneous changes to control variables and are implemented using a

single process. A sequential command is only executed after the robot has completed the

previous sequential command. Therefore, each sequential command requires a process

pair. One process, called from the user program, stores the command in the instruction

buffer. The other process executes the command and is called from the motion system

control process.

Motion
MML Commands/ Control

Status Requests Signal

000

Velocitymm°
MML 0 Status System ) , Wheel

Comm and • Request Control/• Poiin System

Orientation
Changes

Motion TraceSystem Commands

Control Variables, 1oInstruction Buffer Motion
Trace

SyStem

Motion Control Host Output
Y/O

Figure 13: Motion Control System

The system's second purpose is to control the robot's movement. This is done

by executing the motion system control process every 10 milliseconds. Each motion control
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cycle begins by updating the current configuration using information obtained from the

wheel system. Using motion control parameters and the new configuration, it then

calculates the desired linear and rotational velocities needed to follow the current path

element. These desired velocities are then sent back to the wheel system for execution.

5. Wheel System

As indicated by Figure 13, the wheel system is a component of the motion

control system. Presented in Figure 14, the system's primary function is to provide an

interface between the motion control system and the dual axis controller. This interface was

designed to eliminate knowledge about the robot's architecture from the motion control

system. Therefore, the wheel system can easily be replaced by another type of locomotion

system.

Position/
Velocity Orientation

Commands Changes

Generate alculae
PWM and Distance/

MCW Heading

MCW NA /Encoder
S~Values

Dual Axis Shaft Encoder Values
Controller Encoder Value Changes

Motion Control Word

Figure 14: Wheel System

6. Sonar System

As seen in Figure 15, the sonar system's design is similar to the motion control

system. It provides the MML sonar command interface between the user program and the

25



Sonar
MML Commands/ Control

Status Requests Signal

O00 I

Sonar
Status MoSoRequest CommandCotl

Sonar Trace
System Commands

rSonar
Control Variables BadTrace

System

Sona Host Output

Figure 15: Sonar System

sonar board. Some commands control the boards operation by sctting control variables,

while others return sonar information to the user program. It also contains the sonar system

control process. This process saves the current sonar returns that may be requested by the

user program. It can also record the sonar returns by sending the data to the sonar trace

system.

7. Tracing Systems

A trace system is a small sub-system used to record selected information. Shown

in Figure 16, its interface consists of three parts. First, it contains control routines to

initialize and enable/disable the system. The initialization routine sets the size of the

logging buffer, while the enable routine sets the frequency that the data is logged. The
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second part of the interface consists of the logging routines. These routines save the

selected data after ensuring that the buffer is not full. The third component downloads the

recorded information to the host Unix system. Only character data can be sent to the host

system. Therefore, the download process must convert the data if necessary.

There are two tracing system components in the new design. One is located in

the motion control system and is used for debugging. The other is located in the sonar

system. This component is used to log sonar return information.

Trace System Log Data Download
Commands Commands Command

Set System Log Data Send DataPaaetr omadAs Text

Trace Variables,
Logged Data Host Output

Figure 16: Tracing Systems

8. Terminal System

The transfer of information between a processor and a device, such as a terminal,

is time consuming. In real-time systems, it is unacceptable for a high priority system to wait

for 1/0 completion, monopolizing the CPU. However, the ability to display information

from these high priority systems is still desirable.

I The purpose of the terminal system is to provide any sub-system the capability

to display information. As presented in Figure 17, the terminal system accomplishes this
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objective using asynchronous interrupt driven output along with a set of I/O routines. This

allows a high priority sub-system to continue executing by sending output information to

the terminal system for processing. Input is not interrupt driven and should only be used by

low priority routines.

Commands Output
Control

Input Output Signal
AI

Convert Convert Terminal
Characters Data to Output
to Format Characters Control

Console Console
Input Output Bufer Output

Figure 17: Terminal System

When an output routine is called, the routine converts the data into a character

representation if necessary. It then stores the string of characters into an output buffer that

uses a queue data structure. The routine then sends a null character directly to the terminal

using console output. After a character is sent to the terminal, an interrupt is generated by

the hardware requesting another character. T'his interrupt activates the terminal output

control process. The process de-queucs the first character from the buffer and sends it to

the terminal, which then generates another interrupt. This operation continues until the

buffer is empty and the control process terminates the interrupt cycle.
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V. YAMABICO SOFTWARE DEVELOPMENT ENVIRONMENT

The current szfrtware development environment for the rc,bot is rcotrictcd to a single

Sun-3 workstation using SunOS 4.1.1. The reason is that this workstation shares the same

processor architecture as the robot. The development cycle will improve when the robot's

CPU system is upgraded to a SPARC-4 processor due to more advanced development

tools, FTP transfer capability and support for system I/O by the resident debugger.

The Yamabico- 11 does not use a commercial operating system. This means the user

must perform some of the basic operating system functions through the resident debugger.

First, the user must load the program into memory. Then control of the CPU must be

transferred from the debugger program to the user's program by placing the address of the

first instruction to be executed into the program counter (pc). The user must also ensure the

program returns control to the debugger when it has terminated. Preparations for these

functions begin with the compilation phase.

A. C COMPILERS

The only compilers available for the current development environment are the Unix C

Compiler and the GNU Project C Compiler. Both compilers are invoked through a

compiler driver.

1. Compiler Drivers

As shown in Figure 18, a compiler driver is a program that creates executable

code by sequentially calling the pre-processor, compiler, assembler and linker with the

appropriately supplied parameters and files. The driver for the Unix C compiler is cc, while

the driver for the GNU C compiler is gcc. When invoked, the driver passes the C source

file to the pre-processor. Output from the pre-processor is then passed to the compiler. Each

compiler is essentially a translator, translating the C source file into equivalent assembly

code. The compiler driver then passes this assembly code to the assembler to create object

code. Next the driver passes the assembler output to the linker to build executable code. The
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Figure 18: Compiler Driver Process

output from the linker is then stored in a file in the developer's directory. This process can

be verified by using compiler flags to display the compiler driver commands. These flags

are -dryrun for cc and -v for gcc [CPG 88][Stallman 89].

2. Code Optimization

Producing optimized object code is one of the goals of program development.

Both compilers will optimize source code if the -O flag is used. However, this is not always

desirable. There are instances where several values must be assigned to a variable or

address in succession, as in initializing serial ports for example. If this optimization

function is enabled, the compiler would eliminate all but the last assignment, resulting in

an improperly initialized port. This can be verified by inspecting the assembly code

translation produced when the flag -S is used with -0. The -S flag instructs the compiler

driver to stop after translating the C source file into assembly code, storing the translation

in a file. This file will be given the same name as the source code with the exception of a .s

extension. Inspection of the assembly code will reveal that only the last assignment is

retained. Therefore the developer must be careful in deciding which modules can be safely

optimized by the compiler [CPG 88][Stallman 89].

Another way of optimizing code is by using '#define' statements to declare

constants instead of 'const.' Constants declared using 'const' are stored on the stack during

run time. References are implicit, using the stack pointer and an offset. Using the '#define'

method causes the compiler's pre-processor to substitute the actual value into the source
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code prior to compilation. This is the equivalent to hard coding the values except that it is

cleaner and easier to maintain/modify.

3. Standard Libraries

It is assumed that the generaied executable code will be run on the platform used

for development. Therefore each compiler uses and depends on its own set of standard

libraries. These libraries are usually linked with the object code automatically by the

compiler driver when creating the executable. However, some of the routines in these

libraries make calls to the operating system. Since the robot does not have an operating

system, these libraries should not be used. Standard C functions for input/output or file

operations such as printfO should also not be used. Therefore, the compiler driver should

be instructed to stop before the linking phase by using the -c flag. It will then save an object

file with a .o extension for each C source file passed to the compiler driver. These files can

then be used in an explicit call to linker without the libraries [CPG 88][Stallman 891.

4. CC vs. GCC

There is a major difference between the two compilers. The Unix compiler is for

source code developed using the K&R standard, a style of developing C source code

designed by Brian Kernighan and Dennis Ritchie. This standard was developed prior to the

ANSI standard adopted in 1989. The GNU compiler was designed for source code written

in ANSI C. The use of function prototypes for paranietei checking is one of the major

advantages the ANSI standard has over the K&R standard.

5. Using GCC

The GNU Project C Compiler does have some peculiarities that must be taken

into consideration when developing programs for the robot. First, the compiler generates a

call to _main() as the first statement in maino. Since gcc's libraries are not linked with the

object code, the result will be an undefined symbol error during linking. Therefore, the
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developer must explicitly create a function called _main() that returns void. The function

definition should only include a simple return statement,

The compiler may also insert calls to certain standard library routines, such as

memcpyO and memsetO. Since the libraries are not included during the linking phase, again

the result will be an undefined symbol error. Therefore the user must either develop these

functions or build a new library for the robot. The Unix ar command can be used to extract

copies of these functions from the standard libraries and to build the new library [SRM 88].

Another precaution is associated with how the compiler generates storage for

locally declared strings. Storage for strings declared within a function body is allocated

immediately prior to the address of the function itself. Currently, this only effects the

functions main() and user() since they must start at an absolute address. This is discussed

later in this chapter. Therefore, the developer should not declare local strings in either

function.

Two flags that are helpful to use are -Wall and -Wpointer-arith. The -Wall flag

instructs the compiler to issue common warning messages. For example messages will be

displayed when variables are declared but not used, when functions are implicitly declared

as returning an integer or when functions declared to return a non-void value but do not

have a return statement in the function definintion. To receive warnings concerning the use

of pointer arithmatic, use the -Wpointer-arith flag. This allows the developer to find

accidental uses of pointer arithmatic [Stallman 89].

B. LINKING

Each object file passed to the Unix linker (Id) consists of a text segment and a symbol

table. The text segment contains the executable instructions while the symbol table contains

the symbols (function names and global variables) that can be accessed by other modules.

When multiple object files are used, the linker starts by appending the text segment of the

second file to the first's. The text segment of each additional object file is then appended

in the order given to create one text segment. All symbols are also collected into one
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symbol table [SRM 88]. Figure 19 shows an example object module created from the

following command: Id main.o iosys.o serial.o.

main.o functions

iosys.o functions

serial.o functions

symbol table: includes
global variable names
and function names of
main.o, iosys.o and
serial.o

Figure 19: Example of Composite Object File

After all object files have been processed, the linker must calculate the absolute

address of each symbol in the symbol table. Addresses for functions are determined using

the offset relative to the beginning of the program and the program's starting location.

Absolute address calculation for global variables is based on an offset from the next page

boundary following the text segment. It then resolves all references to these symbols.

After all references are resolved, the linker creates a load module. This module is a file

of records used by the loader. These records contain either instructions or initialized global

data along with the address in memory where they are to be located by the loader. All of

the records containing text (instructions) are collected and placed prior to the records

containing the initialized global data.
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1. The Kernel Module

Currently, all programs are divided into two load modules. One module is the

kernel while the other contains the motion commands. The kernel contains main() and most

of the code. As mentioned earlier, the user must know where the program execution begins.

It is standard practice to load the kernel at hexadecimal address 0x304000. Therefore, the

first instruction in the function main() must be located at this address. To correctly resolve

the symbolic references, the kernel's starting location must be passed to the linker by using

the -T 304000 flag [SRM 8'3].

Since the creation of the text segment is based on the order of object files passed

to the linker, the object file containing the definition of main() must be the first file in that

list. The order of the remaining files is unimportant. Additionally, since cc and gcc generate

object code as defined in the C source file, main() must be the first function defined in its

source file. Finally, if local strings are defined in maino, gcc will reserve memory storage

prior to maino. Consequently, 0x304000 would be the address of the string instead of the

first executable instruction. These last two points can be verified by using the -S flag and

inspecting the resulting assembly code. For an example, see Figure 20.

C Source Assembly Translation

mainO0 .ascii "Hello World\0"
.even

-main:

printf('Hello World");

jibsr _printf

Its

Figure 20: Effects of Compilation on Strings
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2. The User Module

The user module contains MML library function calls. Its construction is similar

to the kernel with a few exceptions. First, the function User() is the primary function

instead of main(. Second, the module is loaded at hexadecimal address 0x334000 vice

0x304000.

Since User() is called by the kernel, the kernel must know User('s location.

However, User() must also know the location of the functions in the kernel too. Making

User() accessible to the kernel is accomplished by declaring pointer to a function returning

void within the kernel, and initializing it to 0x334000. To provide access to the kernel's

functions, use the -A kernel flag to link the user module with kernel's symbol table. One

note of caution, the user module is now dependent on the kernel. Therefore any change to

the kernel requires the user module to be re-linked.

C. LOADING

Before a program can be executed, it must be placed into random access memory by a

loader. Each record in the load module contains instructions or initialized data information

along with an address. The loader then loads the information from each record at the

address specified.

However, the loader for the robot is a simple program that essentially dumps the

information sequentially from all records beginning at either 0x304000 or 0x334000. This

does not interfere with the placement of the program instructions. But the global variable

initialization data is erroneously placed at the end of the text segment instead of in the

global variables. Therefore, global variables initialized at compile time actually contain

unpredictable data when the program is loaded. The solution to this problem is to initialize

all data at run-time, prior to executing the program. Figure 21 shows the robot's memory

framework after program loading.
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0x304000

kernel text segment

First page boundary 0

after text segment kernel data segment

0x334000
user text segment

Figure 21: Yarnabico-lI Memory Map

D. DEBUGGING TOOLS

1. The Onboard Debugger

As mentioned earlier, the CPU system includes the VME7920 Debugging

Package. This monitor program is primarily used to load and execute programs on the

robot. However, it can be used to debug programs. The developer can set breakpoints at a

particular instruction, halting program execution. The value of variables or registers can be

examined and modified. The debugger will even aid the developer by displaying machine

code in assembly instruction format. The only requirement is knowledge of the

instruction's or variable's memory location [VDP 861.

36



2. The Unix nm Command

To obtain the address of variables or functions from an executable file, the Unix

nm command can be used. The nm command displays a files symbol table. For example,

entering nm -n user will generate a listing containing each symbol (global variable or

function name) in user's symbol table along with its location in memory. The -n flag

instructs the command to sort the list by memory location. This listing gives the developer

the memory address locations needed to debug programs with the VME7920 Debugging

Package [SRM 88].
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VI. SYSTEM IMPLEMENTATION AND TESTING

ANSI C was the language chosen to implement the new design instead of the older

K&R version used in MML- 10 since it provides stronger type checking through prototypes.

Since the two versions are similar, some of MML-10's source code could be ported to the

new design with minor modifications. ANSI C also enables a smooth transition of MML to

an object oriented paradigm using C++. However, the only ANSI C compiler locally

available for the robot's software development environment is GNU's gcc.

A. IMPLEMENTATION TECHNIQUES

1. Stability

Producing a stable system is one of the primary objectives during the

implementation phase. One method for producing a stable system is to use encapsulation.

In C, this is accomplished by declaring global variables and local functions with the static

specifier. These identifiers can be referenced from sources within the file but prevents

external references.

Reducing unnecessary pointers and pointer arithmetic is another way of

producing a stable system. Generally, there are only two reasons to call a function. The first

reason is to produce some action, such as displaying a value. In this case, actual values are

passed as parameters and the function does not return a value. The second reason to call a

function is to process information, producing one or more results. In this case, it is common

to let the function assign the values directly by passing the addresses of these variables as

parameters. However, this can lead to many programming errors. A better method for

writing these functions is to use a return statement. To return more than a single value, a

structure of values should be used.
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2. Portability

a. Required Assembly Code

Each assembly instruction corresponds to a single machine instruction. It

also produces hardware dependencies since each processor has its own assembly language.

Threfnre progr~mring in assembly langnage is very difficiflt antd should be avoided.

One reason to use assembly language programming is to increase the speed

of program execution [Schildt 90]. Although MML is a real-time system with timing

constraints, it is still a research project. Using assembly language to increase program

execution simply adds complexity.

The primary reason to use assembly language is to access specific hardware

components or instructions that can not be accessed in any other manner [Schildt 90]. The

status register and rte instruction are examples of such requirements when using the

Motorola 68020 processor. Modification of the status register is handled by instructions

used for special registers. The rte is used to return from an interrupt handling routine

instead of the normal rts instruction.

b. Handling Interrupts

Setting up an interrupt mechanism requires two steps. First, an interrupt

handler must be created. This routine is a basic shell that must be written in assembly

language. The routine must begin by saving all of the CPU's registers onto the stack. If a

coprocessor is used, those registers must be saved as well. Then the routine must make a

call to a C function that will control the real processing during the interrupt cycle. Once

control is returned from the C function, the interrupt handler must restore each register to

the value it contained prior to the interrupt. It is important to note that the registers must be

restored in the reverse order as they were saved. Finally, the rte instruction is used to return

from the interrupt.

The second step in establishing an interrupt mechanism is to setup the CPU

and interrupting hardware component. This is a two step process. First, the address of the
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interrupt handler must be placed in the CPU's vector table. Next, the index value of the

table entry is passed to the interrupting device. Once these two steps are complete, the

hardware device can be enabled.

c. Absolute Addressing in C

In C, each variable declared as a pointer stores R 32-bhi -mory address and

can be assigned constant values between zero and 232_1. The amount of memory that a

pointer references depends on the pointer's declaration. For example, if a variable is

declared as a character pointer, only a single byte, located at pointer's value, will be

referenced. But, if the variable is declared as an integer pointer, then four bytes will be

referenced by the pointer, starting at the value of the pointer.

The amount of memory that a pointer references can be temporarily

changed. Using the cast operator, a pointer is changed to another pointer type. However,

the change only lasts for that operation. Afterwards the pointer reverts back to a pointer of

its declared form.

3. Readability

One technique for making a system more readable is to use descriptive names

for functions, variables and constants. Abbreviations should never be used. When declaring

a symbol, two conventions are generally used: separate multiple words with underscores or

capitalize the first letter of each word in the symbol. The later convention is used

throughout this implementation. Another naming convention utilized in this

implementation is to declare or define constant symbols with all capital letters.

Header files are used to declare the prototypes for each function in a module that

can be accessed using external calls. This presents the file's interface and should be well

documented. The comments should describe what parameters are required and the expected

results. A description of the algorithm is not needed. However, constants needed by a C file

that may also be referenced by other files are included in its header file also.
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Another technique to making a system more readable is to limit the size of the

functions to one page. Techniques such as page breaks between functions and good

descriptive comments should also be used.

4. Backward Compatibility

To maintain backward compatibility, the new system generate4 user ýknd kernel

object files. The kernel is still loaded at 0x304 000 and user is loaded at 0x334000. The

absolute address of user() is declared in motorola.asm.s as _user. To prevent the linking

error of duplicate symbols, the actual name of the user function in user.c should be UserO

instead of usero. However, to transfer control to the user program, main() is still required

to call usero instead of Usero.

To maintain compatibility with MML-10's immediate command names, a

translation header file was created. This is a file containing macros, used by a pre-

processor, that replace the old command syntax with the new command syntax. A similar

one should be created for other MML- 10 commands so that previously created user

programs can operate with the new system.

B. SYSTEM IMPLEMENTATION

Due to the scope of the design, it was decided that only a core portion of the new design

would be implemented, starting with the CPU system. The system described in this section

consists of files with .c, .h, and .s extensions. Those files ending with a .c are C source files.

These files contain function definitions and encapsulated data structures. The .h files are

the header files, while the files ending with a .s are written in assembly language. With the

exception of main.c, each C and assembly file has an associated header file. All files are

presented in the Appendices and were developed as part of this study except for a few

routines found wheels.c and motorola.asm.s. These routines were ported from MML-10.

However, the system does make use of some utility functions, such as memory

management and math routines that were developed in earlier projects.
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1. The CPU System

The CPU system was implemented first since it is required to initialize all other

systems. Appendix A contains the source code for this system. It contains the files:

definitions.h, main.c, system.h, system.c, motorola.h, motorola.asm.s, se 'ial.h, and serial.c.

The definitions.h file contains the system's standard type declarations. Some of

the new data types refer to constructs used by the motion system. Other declarations define

standard assembly language data types, such as BYTE and WORD. These definitions make

the code easier to follow.

The file main.c only contains maink) to prevent the linking problem discussed

earlier. This is the function that gets loaded at 0x304000. It initializes tl, sub-systems and

then calls usero, the user program. After the user program is finished, rexito is called to

return control back to the resident debugger.

The Initialization routines called by mainO are located in system.c. They are used

to setup the interrupt mechanisms described earlier. Also included in this file are the some

system functions for enabling and disabling interrupts and the main() function required

by the gcc compiler.

The motorola.asm.s module contains all of MML's required assembly code. The

interrupt handling shells described above are located in this module. Also defined here is a

routine to change the CPU's interrupt priority level. The rexit0 routine is located in this

module since it uses a sequence of instructions that are difficult to duplicate using a high

level language. The address of usero is also set in this file.

The serial.c module contains the serial system. As mentioned earlier, this is a

component of the CPU system. It serves as an interface between the serial boards and the

other sub-systems. The previously discussed technique for referencing absolute memory

locations is evident in this module.
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2. The Terminal System

The terminal system was chosen as the next system to implement as this would

aid in debugging other systems. The files iosys.h and iosys.c contain the system's source

code and are located in Appendix B. The functions defined in iosys.c provide input and

output for string, integer and real number data types.

Some of the functions depend on conversion routines. Some routines convert

strings to integer or real values. Others convert integer and real values to strings. Notice

how the global data is encapsulated by using the static specifier. This prevents routines

outside this module from accessing these variables.

3. The Motion Control System

Appendix C contains the files: motion.h, motion.c, motiontrace.h motiontrace.c,

wheels.h, and wheels.c. These files define the motion control system. motion.c defines the

functions that support odometry and velocity control. The wheel system component is

defined in t,-c wheels.c module while motiontrace.c defines motion's tracing system

component. The tracing system depends on memory management routines. The motion

control rules required for path following are not implemented in this core system.

4. The User Program

A sample user.c is included in Appendix D along with its user.h. This module

shows how to use the core system. Another file associated with the user system is

compatability.h. This file provides the translation layer for older user programs developed

for MML-10.

C. SYSTEM TESTING

Since the system was incrementally developed, testing was conducted at each system

modification. This section describes the testing techniques that proved most helpful.
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1. Using an External Power Supply

The robot's battery power was often drained due to software testing by several

people. System testing was aided by an AC power supply. To test the motion control

system, the robot was placed on wooden blocks to prevent movement The power supply

provided sufficient Dower when testing the CPU and terminal systems. However, it was

discovered that the generator did not produce enough power to drive the wheels above

moderate speeds. Fast wheel movements caused the CPU to shut down due to insufficient

power. So stationary testing was conducted at slow speeds.

2. Output from Interrupt Handlers

Displaying information to the terminal from the motion control system required

special handling. The problem was that the information would be sent to the terminal

system every 10 milliseconds, causing the output buffer to overflow. The solution was to

send the messages at a lower frequency. This was accomplished by using the LoopTest

variable in motion.c as a counter. Every motion control cycle incremented the LoopTest.

When the counter reached the frequency value of 100, it would be reset to zero. All output

messages were then placed in a conditional block that checked the value of LoopTest. Only

when it was zero would the message be sent to the terminal system. The result is that the

message would be sent to the terminal every second instead of every 10 milliseconds.

3. Measurements

The first part of the motion control system to be implemented was the wheel

system component. Manual calculations were required to verify the operation of this

system. To verify the change in distance and orientation information, the robot was

manually pushed along a path with known distance. Several trials were performed using

paths of different lengths. When the robot's results were compared to the path lengths

measured with a measuring tape, the differences were consistently within one centimeter.

To verify the velocity inputs to the wheel system, the tracing component is used.

Figure 22 is an sample of results obtained by changing the robot's commanded velocity
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Figure 22: Velocity Control Results

from zero to 20 cm/s. The results show that the actual velocity is one to two centimeters per

second faster than the commanded velocity. This difference was found at all speeds tested

and is the result of a lookup table used to calculate pwm values. This table is tailored for

this specific system and requires further testing to correct the discrepancies.
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VII. CONCLUSIONS

A. RESULTS

The end product is a solid core system, capable of serving as a foundation for further

MML research. The system is implemented using a standardized language. Hardware

dependencies are localized and the required assembly code is reduced to a single module.

This results in a system that is very portable. Each module is provided with a clean interface

making the system very modular. With limited pointer references and data encapsulation

the system is also very stable. The result is a system that is very readable, easy to maintain

and easy to modify.

One of the underlying themes presented in this study is pointer reduction. This is not

to imply an unfamiliarity with the C language or the use of pointers. In fact the author is

aware of the value of using pointers and has been programming with pointers in the C

language since 1985. However, many of the researchers on the MML project do not possess

the same experience level. This has resulted in improper pointer usage, thereby increasing

program complexity and decreasing stability. This is the primary reason for recommending

the reduction pointer usage.

B. RECOMMENDATIONS

The next step for this new system is to complete the motion control system. This

requires the implementing of the motion control rules to provide path following. It also

requires the addition of the sequential commands and the instruction queue.

Following the completion of the motion control system, the sonar system should be

implemented. This will involve writing the interrupt handler shell and control process. The

assembly code should also be converted to ensure portability.

Another potential project is to develop a simulator based on the new system. Due to

the system's modularity, this should only require the simulation of the interrupt

mechanisms and the hardware dependent code.
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APPENDIX A

A. DEFINITIONS.H

Author(s): Scott Book
Project: Yamabico Robot Control System
D&F.a: December 8, 1993
Revised: March 4,1994
File Name: definitions.h
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains standard definitions and data type

declarations used througi'out the reset of the MML system.

#ifndef _DEFINITIONS_H

#define _DEFINITIONS_H

#define MOTIONCONTROLCYCLE 0.01

#define MX_.REALPRECISION 15

#define MAX_iNTEGERDIGITS 19

typedef enum (FALSE = 0, TRUE) BOOLEAN;

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long LONG;
typedef unsigned long* ADDRESS;

typedef struct(
double Linear;
double Rotational;

} VELOCITY;

typedef struct(
double XPosition;
double YPosition;
POINT;

typedef struct(
POINT Position;
double Orientation;
double Kappa;
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I CONFIGURATION;

#endif

B. MAIN.C

.,- *.e ****t ***********..************************.********.*******.****. ** ** *..** *e

Auihor(s): Scott Book
Pmject" Yarabico Robot Control System
Date: December 8, 1993
Reviseu: March 4, 1994
File Name: main.c
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains maino. Its purpose is to initialize all

sub-systems and then pass control to usero. Once usero is
complete, the routine returns control to the resident debugger.

#include "definitions.h"
#include "motorola.h"
#include "system.h"
#include "memsys.h"
#include "iosys.h"
#include "serial.h"
#include "motion.h"
#include "user.h"

void usero;

void maino(

CpuSyslnitializeo;

ResetSerialBoardso;

SetlnterruptPriority(7);

InitializeMemSyso;

InitializeConsoleo;
InitializeHost0;

loSyslnitializeo;
MotionSyslnitializeo;

SetlnterruptPriority(O);

usero;
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rexitO:
I

C. SYSTEM.H

Author(s): Scott Book
Project: Yamabico Robot Control System
Date: December 8, 1993
Revised: March 4, 1994
File Name: system.h
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This tile contains the prototypes for routines that are hardware

dependent.

#ifndef __SYSTEMH

#define _SYSTEM_H

Function main0 is an empty function. It is required if gcc is used since
gcc will insert a call to _main0 within maino.

void _maino;

Function CpuSyslnitializeO is used to set up any requirements that are
specific to the Motorola 68020 CPU.

void CpuSyslnitializeO;

Function EnablelnterruptsO turns on interrupt servicing.

void EnablelnterruptsO;

Function DisablelnterruptsO turns off interrupt servicing.

void Disablelnterfuptso;

Function SetConsolelntMechanismo establishes the console's interrupt
driven output mechanism.

void SetConsolelntMechanismo;
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Function SetMotionlntMechanism0 establishes the synchronous interrupt

mechanism required for motion control.

void SetMotionlntMechanismo;

#endif

D. SYSTEM.C

Author(s): Scott Book
Project: Yamabico Robot Control System
Date: December 8, 1993
Revised: March 4, 1994
File Name: system.c
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains the required cpu specific routines. The file

is seperated into two sections: private and public. The private
section contains the encapsulated data while the public section
contains the routines available to other systems/modules.

#include "definitions.h"
#include "motorola.h"
#include usenal.h"
#include "system.h"

static int SavedlnterruptMask;
static BOOLEAN InterruptsOn;

Routine main is required when using the 'gcc' compiler. This is because the
compiler inserts a call to this routine at the beginning of the main function
defined for the program. This is normally taken care of by linking in the
bootstrap object modules, however these are not added to a program that
operates without an operating system such as the mml program. Therefore, since
this routine is called, the only requirement is for this routine to simply
retum back to the main program.

void maino{
return;

50



Function CpuSyslnitialize0 is used to set up any requirements that are
specific to the Motorola 68020 CPU.

void CpuSyslnftializeo{
ADDRESS VectorTableBaseAddress = GetVectorBaseo;

I. .****.***eeeeee*e*ee**e.**e ee.*e**e*ee**eee****eeeeeeeee**.eeeeee**e e

" Use a blank interrupt handler to recover from unexpected exceptions"* such as when the status word is set to a specific value in function
"* SetlnterruptPriority. So enter the address of that interrupt handling
"* routine into the 255th entry of the exception/interrupt vector table.

*(VectorTableBaseAddress + 255) - (LONG)Unexpected;

InterruptsOn - TRUE;
SavedlnterruptMask = 0;}

Function Enablelnterrupts0 allows other systems to reset the interrupt mask
to the previously stored value.

void Enablelnterruptso(
if(InterruptsOn .- FALSE){

InterruptsOn = TRUE;
SetlnterruptPriority(SavedlnterruptMask);

}
)

Function Disablelnterrupts0 allows other systems disable all interrupt
servicing. The current interrupt mask is saved so that it can be restored
later.

void Disablelnterruptso(
if(InterruptsOn .. TRUE)(

SavedlnterruptMask - SetlnterruptPriority(7);
InterruptsOn - FALSE;

I
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Function SetConsolelntMechanism() establishes the console's interrupt
driven output mechanism.

void SetConsolelntMechanismo{

ADDRESS VectorTableBaseAddress = GetVectorBaseo;

Disablelnterruptso;

/* Enter the address of the interrupt handling routine into the 65th */
/* entry of the exception/interrupt vector table of the CPU. */
*(VectorTableBaseAddress + 65) = (LONG)loSysHandler;

SetLatch(OxffffOO31,65);

Enablelnterruptso;
}

Function SetMotiontntMechanism0 establishes the synchronous interrupt
mechanism required for motion control.

void SetMotionlntMechanismo{
ADDRESS VectorTableBaseAddress = GetVectorBaseo;

/* Formula: countervalue = (4eO6MH / 16 frquency divider) * InterruptInterval e/
/ ex: (4e06/16) * 0.01 seconds = 2500 */
SetTimer(TIMERADDRESS_1,5,Oxlc61,2500,2500);

Disable lnterruptso;

/* Enter the address of the interrupt handling routine into the 64th /

/* entry of the exception/interrupt vector table of the CPU. */
*(VectorTableBaseAddress + 64) = (LONG)MotionSysHandler;

SetLatch(OxffffO141,64);

Enablelnterruptso;

}
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E. MOTOROLA.H

Author(s): Scott Book
Project: Yamabico Robot Control System
Date: December 8, 1993
Revised: March 3, 1994
File Name: motorola.h
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains the prototypes to the required assembly

language routines.

#ifndef _MOTOROLA_H

#define _MOTOROLA_H

#include "definitions.h"

Function rexit( is used to safely return to the debugging routine used on the
Yamabico's processor. It is a required call in order to run the kernel again
without having to reload it.

void rexito;

Function GetVectorBase0 returns the starting address of the interrupt vectors
to the calling routine. This is needed in order to calculate the positions to
place the interrupt handler addresses.

ADDRESS GetVectorBaseo;

Function SetlnterruptPriority0 sets the interrupt priority level to the value
passed in as a parameter, while returning the old priority level to the
calling function. The return value can then be used to reset the priority
level at a later call. The parameter must be a 4-byte integer, and the value
must be in the range 0-7. If it is out of range, a -1 is returned to indicate
an error.

int SetlnterruptPriority(int);

Interrupt handler _Unexpected is used to handle the unexpected exceptions
raised during execution of the program. Explicitly changing the status word
is an example of such an exception.
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void Unexpectedo;

Interrupt handler _oSysHandler is used to handle the interrupts from the
serial port that is set up to handle the console I/O. It is really a shell
routine needed to call the C function that does the real work.

void loSysHandlerO;

Interrupt handler _MotionSysHandler is used to handle the interrupts from a
timer on the serial board set for synchronous interrupts.

void MotionSysHandlerO;

#endif

F. M-OTOROLA.ASM.S

# Author(s): Scott Book
# Project: Yamabico Robot Control System
# Date: December 8, 1993
# Revised: March 3, 1994
# File Name: motorola.asm.s
# Environment: Sun-3 assembler for the motorola 68020 processor
# Description: This file contains the only required assembly lanaguage for the
# MML system. The main purpose of this file is to define the
# system routines that can not be defined using a higher level
# language.

# The following declaration is necessary when using cc with the -f68881 argument
# since the corresponding library is not linked in. It can be eliminated if gcc
# is used.

.comm f68881_used, 4

# Defines the address of usero.
.globl _user

_user= 0x334000

.globl _rexit

.globl _GetVectorBase
.globl _SetlnterruptPriority
.globl _Unexpected
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.globl _loSysHandler

.globl _MotionSysHandler

.data

.text

# Routine _rexit is used to safely return to the debugging routine used on the
# Yamabico's processor.

.even
_rexit:

trap #15
.word 0x0063
rts

# Routine _GetVectorBase returns the starting address of the interrupt vectors
# to the calling routine. This is only needed by higher level languages that
# can't read the vector base register (vbr) directly.

.even
_GetVectorBase:

link a6,#0 When entering an assembly subroutine, use the
moveml #O,sp@ link command to preserve the previous address

in the stack pointer. This makes parameter
passing and clean up simpler. The previous
contents of a6 are then pushed onto the stack.

clirl dO Return the starting address of the vector
movc vbr,q;C interrupt table to the calling routine.

unlk a6 If the link command was used, ensure that the
rts unlk command is also used to restore the

previous contents of both the stack pointer
and a6 when the subroutine was entered.

# Routine _SetlnterruptPriority sets the interrupt priority level to the value
# passed in as a parameter, while returning the old priority level to the
# calling function. The return value can then be used to reset the priority
# level at a later call. The parameter must be a 4-byte integer, and the value
# must be in the range 0-7. If it is out of range, a -1 is returned to indicate
# an error.

.even
SetlnterruptPriority:

link a6,#0 I When entering an assembly subroutine, use the
moveml dl-d2,sp@- I link command to preserve the previous address

I in the stack pointer. This makes parameter
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passing and clean up simpler. The previous
clIrl dO contents of a6 are then pushed onto the stack.
clirl dl Also save and clear any registers that might
clIrI d2 be used in the routine.

movl a6@(8),d2 Get the first parameter.

cmpl #7,d2 Ensure that the parameter is between 0 and 7.
bgt L1O If it's not, then branch to the error area. If
cmpl #0,d2 it is, then place the value in the correspond-
bit L10 ing interrupt priority area of the status
Isll #8,d2 register

movw sr,dO Get the current status word and use it to
movw dO,dl construct the new status word with the
andw #OxFOFF,dl interrupt priority greater than or equal to
orw d2,dl the previous interrupt priority. All other
movw dl ,sr 6ik femain unchanged.

andw #0x0700,dO Finally, get the value of the previous
Isr! #8,dO interrupt priority by selecting the priority
bra L20 bits and then return the value in register dO.

Li O:movl #-1 ,dO An error has occured, so return a negative
value.

L20:moveml sp@+,dl-d2 Restore the registers that were saved on
unIk a6 entry. If the link command was used, ensure
rts that the unlk command is also used to restore

the previous contents of both the stack
pointer and a6 when the subroutine was
entered.

# Interrupt handler _Unexpected is used to handle the unexpected exreptions
# raised during execution of the program. Explicitly changing the status word
# is an example of such an exception.

.even
-Unexpected:

rte

# Interrupt handler _loSysHandler is used to handle the interrupts from the
# serial port that is set up to handle the console I/0. It is really a shell
# routine needed to call the C function that does the real work. All of the
# system registers must be pushed onto the stack prior to calling the C function
# since the compiler may or may not save the contents of the registers prior to
# use, thus possibly corrupting any data in the functions that were interrupted.
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# The restoration of the register must be done in reverse order!!

.even
_loSysHandler:

link a6,#-184 1 When entering an assembly subroutine, use the
fsave a6@(-184) link command to preserve the previous address
fmovemx fpO-fp7,sp@- in the stack pointer. This makes parameter
fmovel fpcr,sp@- passing and clean up simpler. The previous
fmovel fpsr,sp@- contents of a6 are then pushed onto the stack.
fmovel fpiar,sp@- Then save all of the system registers.
moveml dO-d7/aO-a5,sp@-

movel #-65529,aO Clear the B control/status register of
moveb aO@,dO port 2 for console output (as per example

in serial pot manual).

jsr _loSysControl Call the C function that is the real work
horse of the interrupt handler

moveml sp@+,dO-d7/aO-a5 I Restore system registers in reverse order.
fmovel sp@+,fpiar If the link command was used, ensure that the
fmovel sp@+,fpsr unlk command is also used to restore the
fmovel sp@+,fpcr previous contents of both the stack pointer
fmovemx sp@+,fpO-fp7 and a6 when the subroutine was entered.
frestore a6@(-184)
unlk a6
rte

# Interrupt handlerMotionSysHandler is used to handle the interrupts from the
# serial board timer that is set up to generate synchronous interrupts for motion
# control. It is really a shell routine needed to call the C function that does
# the real work. All of the system registers must be pushed onto the stack prior
# to calling the C function since the compiler may or may not save the contents
# of the registers prior to use, thus possibly corrupting any data in the
# functions that were interrupted. The restoration of the register must be done
# in reverse order!l

.even
_MotionSysHandler:

link a6,#-184 1 When entering an assembly subroutine, use the
fsave a6@(-184) I link command to preserve the previous address
fmovemx fpO-fp7,sp@- in the stack pointer. This makes parameter
fmovel fpcr,sp@- I passing and clean up simpler. The previous
f movel fpsr,sp@- contents of a6 are then pushed onto the stack.
fmovel fpiar,sp@- Then save all of the system registers.
moveml dO-d7/aO-a5,sp@-

jsr _MotionSysControl I Call the C function that is the real work
I horse of the interrupt handler
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moveml sp@+,dO-d7/aO-a5 I Restore system registers in reverse order.
fmovel sp@+,fpiar I If the link command was used, ensure that the
fmovel sp@+,fpsr I unlk command is also used to restore the
fmovel sp@+,fpcr I previous contents of both the stack pointer
fmovemx sp@+,fpO-fp7 I and a6 when the subroutine was entered.
frestore a6@(-184)
unlk a6
rte

G. SERIAL.H

Author(s): Scott Book
Project: Yamabico Robot Control System
Date: December 8, 1993
Revised: March 2, 1994
File Name: serial.h
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains the prototypes/interface for the available

serial system for the VME8300 Quad Serial Port
Board.

#ifndef __SERIAL_H

#define _SERIAL_H

#include "definitions.h"

#define TIMERADDRESS_0 Oxffff 0011
#define TIMERADDRESS_1 0xffff0111

#define CONSOLE Oxffff0001
#define HOST Oxffff 0005
#define YSB1 OxffffO121
#define YSB2 Oxffffo125

Function ResetSerialBoardso resets both VME8300 Quad Serial Port Boards.

void ResetSerialBoardso;

Function InitializeConsole0 prepares the port that connects the onboard
console with the robot for I/O.
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void lnitializeConsoleO;

Function InitializeHostO sets up the port that connects the Unix work-
station with the robot to be used for object code and data transfers.

void InitializeHosto;

Function Initialize Porto establishes the communications of the given Port
to the parameters given. Baud can be assigned standard communication rates
300, 1200, 2400, 4800, 9600, or 19200. HandShaking, Txlnterrupt, and
Rxlnterrupt are used as ON/OFF flags. An assigned value of zero will disable
these options, while any non-zero value will enable them.

void InitializePort(LONG Port,
LONG Baud,
LONG HandShaking,
LONG Txlnterrupt,
LONG Rxlnterrupt);

Function SetTimer sets and starts a particular timer to generate interrupts

void SetTimer(LONG TimerAddress,
LONG CounterNumber,
LONG ModeCmd,
LONG LoadCmd,
LONG HoldCmd);

Function SetLatch0 passes to the specified latch the index value of the
vector table entry containing the interrupt handlers address to the serial
board.

void SetLatch(LONG LatchAddress, BYTE VectorNumber);

Function PutConsole0 initiates the printing of the single character Source
to the console.

void PutConsole(char Source);

Function PutHost( sends a single character to the port connected to the host
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workstation.

void PutHost(char Source);

***eeeeeeet elleeeettte , **et**te *.*eeeet****** *44CC ***t*********t ttetet t** 4*4

Function GetConsole() returns a single character typed from the console.

char GetConsoleo;

Function TerminateConsoleOutputO signals the console port that the interrupt
generated by the port has been serviced.

void TerminateConsoleOutputO;

Function TerminateConsolelntCycleO tells the console port to terminate all
unserviced interrupts.

void TerminateConsolelntCycleO;

#endif

H. SERIAL.C

Author(s): Scott Book
Project: Yamabico Robot Control System
Date: December 8, 1993
Revised: March 2, 1994
File Name: serial.c
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains the VO routines necessary to interface

between the VME8300 Quad Serial Port Board and the functions of
the I/O System. The details of hardware setup and initialization
followed the examples in the VME8300 Quad Serial Port Board
Users Manual. The file is seperated into two section. The first
is the private section containing the encapsulated data and
functions. The second section is the public section. This
section defines the interface routines.

WARNINGIIIThis system must not be optimized when it is compiled. There are
places where it is necessary to write several values to the same
address in succession. If an optimization technique is used, the
compiler could discard all but the last write. This would cause
the serial board to be impi•perly setup.
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#include "definitions.h"
#include usystcm.h"
#include "motorola.h"
#include "iosys.h"
#include "serial.h"

PRIVATE SECTION

The following section defines the encapsulated definitions, data structures
and prototypes used in the system.

#define ARM 0x60
#define DISARM OxcO
#define LOAD 0x40

#define CONTROLREGISTER_9 0
#define CONTROLREGISTERI 1
#defint CONTr OLREGISTER_2 2
#define CONTROLREGISTER_3 3
#define CONTROLREGISTER_4 4
#define CONTROLREGISTER_5 5
#define CONTROLREGISTER_6 6
#define CONTROLREGISTER_7 7

The following static function declarations are the prototypes for the
encapsulated functions.

static void SetDataTransfer(LONG, LONG, LONG, LONG);
static void PutB(char Data, int MemoryAddress);

Function SetDataTrinsfer0 establishes the communications for a given Port
by setting the appropriate bits in each of the seven control registers for
that Port. Details on the values sent to the command and data registers can
be found in the VME8300 Quad Serial Board Users Manual.
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static void SetDataTransfer(LONG Port,
LONG HandShaking,
LONG Txlntemiupt,
LONG Rxlnterrupt)

BYTE* CmdRegister = (BYTE*)(Port + 2);

*CmdRegister = CONTROLREGISTER_0;
*CmdRegister = Ox 18;

*CmdRegister = CONTROLREGISTER_2;
'CmdRegister = UKOO

*CmdRegister = CONTROLREGISTER_4;
*CmdRegister = Ox44;

*CmdRegister = CONTROLREGISTERV;
*CmdRegister = 0x04 I Txlnterrupt I Rxlntenupt;

*CmdRegister = CONTROLREGISTER_3;
*CmdRegister = Oxci I HandShaking;

*CmdRegister = CONTROLREGISTER_5;
*CmdRegister = Oxe8;

tCmdRegister = CONTROLREG ISTER_6;
*CmdRegister = UKOO

*CmdRegister = CONTROLREGISTER_7;
*CmdRegister - OxOO;

Function PutB() displays the character in Data on the console. It does
this by polling the command/status register to ensure that the transmitter
buffer is empty and ready to receive the character. The delays (the for loops)
are required to keep the data from overwhelming the port and becoming garbage.

NOTE:
The function required the 'for' loop as a timing delay. Without this delay,
some of the characters sent to the console were lost. The reason behind this
data loss was not determined.

static void PutB(char Data, int MemoryAddress){
BYTE* OutputData - (BYTE*)MemoryAddress;
BYTE* OutputCmd = (BYTE*)(MemoryAddress + 2);
const mnt DelayTime = 0x300;
int Wait;
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"OutputCmd = 0;
for(Wait=0; Wait < DelayTime; Wait++)

while(('OutputCmd & 0x04) == 0)

*OutputData = Data;

it(MemoryAddress == CONSOLE && Data == Mn')(
for(Wait=0; Wait < DelayTime; Wait++)

while((*OutputCmd & 0x04) == 0)

"*OutputData = V;
I

PUBLIC SECTION

The following section defines the functions that provide access to the
serial sub-system.

Function ResetSerialBoards0 resets both VME8300 Quad Serial Port Boards.

void ResetSerialBoards0{
BYTE* Timer;
int Wait;

Timer = (BYTE*)(TIMERADDRESS_0 + 2);
"Timer = Oxff;

Timer = (BYTE*)(TIMERADDRESS_1 + 2);
"Timer - Oxff;

for(Wait=O; Wait<0xl00; Wait++)

)
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Function lnitializeConsole0 prepares the port that connects the onboard
console with the robot for VO. It also establishes the mechanism for
interrupt driven output.

void lnitializeConsoleo{
InitializePort(CONSOLE,9600,0, 1,0);
SetConsolelntMechanismo;)

Function InitializeHosto sets up the port that connects the Unix work-
station with the robot to be used for object code and data transfers.

void InitializeHosto{
InitializePort(HOST,19200,0,0,0);

)

Function InitializePorto establishes the communications of the given Port
to the parameters given. Baud can be assigned standard communication rates
300, 1200, 2400, 4800, 9600, or 19200. HandShaking, Txlnterrupt, and
Rxlnterrupt are used as ON/OFF flags. An assigned value of zero will disable
these options, while any non-zero value will enable them.

void lnitializePort(LONG Port,
LONG Baud,
LONG HandShaking,
LONG Txlnterrupt,
LONG Rxlnterrupt)

LONG taddr;
LONG cnum;
LONG Icount;
LONG hcount;

switch (Port){
case CONSOLE:

taddr = TIMERADDRESS_0;
cnum = 1;
break;
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case HOST:
taddr =TIMERADDRESSO0;

cnum -2;

break;
case YSB1:

taddr - TIMERADDRESSV;
cnum = 3;
break;

case YSB2:
taddr = TIMERADDRESSV;
cnum = 4;
break;

default:
PutStr(uLPort: illegal port");
rexft(O;

switch (Baud)(
case 300:

loount =NOW~a;

hcount =OxOlal;

break;
case 1200:

lcount - WOW68
hcount = WOW68
break;

case 2400:
Icount = WON03;
hcount - 040034;
break;

case 4800:
Icount - OxO01la;
hcount . OxO01la;
break;

case 9600:
Icount - Ox4O0d;
hcount = OxOO0d;
break;

case 19200:
Icount = WON00;
hcount - Ox4O07;
break;

default:
PutStr(mi-port: bad baud rate");
rex ito;

SetTimer(taddr, cnum, 0x~b62, lcount, hcount);

SetDataTransfer(Port,

(HandShaking ? Wx2: 0),
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(Txlnterrupt ? 0x02 0),
(Rxlnterrupt ? Ox1O 0));

Function SetTimer() initializes one of the five counters located on the
serial board (with the corresponding TimerAddress) by assigning values to
command and data registers for that timer. Details on the values sent to the
command and data registers can be found in the VME8300 Quad Serial Board
Users Manual.

void SetTimer(LONG TimerAddress,
LONG CounterNumber,
LONG ModeCmd,
LONG LoadCmd,
LONG HoldCmd)

BYE{m~gse BT*(-mrdrs )
BYTE* mdat~egister = (BYTE*)(TimerAddress+2);
BYTE CounterSelectBit;
BYTE TimerCommand;

CounterSelectBft = 1;
CounterSelectBft = CounterSelectBft << (BYTE)(CounterNumber - 1);

TimerCommand = DISARM;
TimerCommand = TimerCommand ICounterSelectBit;
*CmdRegister = TimerCommand;

TimerCommand = LOAD;
TimerCommand = TimerCommand ICounterSelectBit;
*CmdRegister - TimerCommand;

*CmdRegister = (BYTE)CounterNumber;

:DataRegister =(BYTE)ModeCmd;
DataRegister = (BYTE)(ModeCmd >> 8),

:DataRegister = (BYTE)LoadCmd;
DataRegister - (BYTE) (LoadCmnd >> 8);
*DataRegister - (BYTE)HoldCmd;
*DataRegister = (BYTE)(HoldCmd >> 8);

TimerCommand - ARM;
TimerCommand - TimerCommand I CounterSelectBit;
*CmdRegister - TimerCommand;
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Function SetLatch0 passes to the specified latch the index value of the
vector table entry containing the interrupt handlers address to the serial
board. When an interrupt associated with the given latch is generated, the
VectorNumber is placed onto the address bus, indicating to the cpu the vector
table entry that contains the address of the interrupt handler.

void SetLatch(LONG LatchAddress, BYTE VectorNumber){
*(BYTE*)LatchAddress = VectorNumber;

)

Function PutConsoleO initiates the printing of the single character Source
to the console.

void PutConsole(char Data){
PutB(Data,CONSOLE);

}

Function PutConsole0 initiates the printing of the single character Source
to the host system.

void PutHost(char Data){
PutB(Data,HOST);

}

Function GetConsoleo polls the command/status reginter, waiting until a
character from the console is placed in the rpceive buffer. It then returns
that character to the calling function.

char GetConsoleo{
BYTE* tnputAddress - (BYTE*)CONSOLE;
BYTE* InputCmd - (BYTE*)(CONSOLE + 2);

°lnputCmd = 0;
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while((*InputCmd & OxOl) -= 0)

return *(BYTE*)InputAddress;

Function TerminateConsoleOutput0 signals the console port that the interrupt
generated by the port has been serviced.

void TerminateConsoleOutputo{
*(BYTE*)(CONSOLE + 2) = 0x28;

}

Function TerminateConsolelntCycleO tells the console port to terminate all
unserviced interrupts.

void TerminateConsolelntCycleo{
*(BYTE*)(CONSOLE + 2) = 0x38;
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APPENDIX B

A. IOSYS.H

Author(s): Scott Book
Project: Yamabico Robot Control System
Date: December 8, 1993
Revised: March 2, 1994
File Name: iosys.h
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains the prototypes/interface for the functions

available in the I/O System module.

#ifndef _IOSYS_H

#define _IOSYS_H

#include "definitions.h"

Function loSyslnitialize0 initializes the ports used for serial communications.

void loSyslnitialize0;

Function IoSysControlo is the work-horse routine for the output interrupt
handler.

void loSysControl0;

Function PutStr0 initiates the printing of the characters in the Source
string to the console.

void PutStr(char" Source);

Function Putlnt sends the ascii representation of the parameter Number to
the console.

void Putlnt(int Number);
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Function PutReal seids the ascii representation of the parameter Number to
the console. The output is in exponential notation with a total of Places
digits after the decimal (up to a maximum of the constant MAXREALPRECISION
found in the source file).

void PutReal(double Number, int Places);

Function GetStro copies the string of characters typed at the console (up to
Length characters) into the string pointed at by Source.

void GetStr(char' Source, int Length);

Function Getlnt0 reads a string from the console (up to MAXINTEGER DIGITS)
and converts the ascii representation into its integer value. All leading
white space (spaces and tabs) are discarded. The conversion stops at the
first character that can not be part of a legel integer value. All remaining
characters in the string are discarded. Strings where the first non white-
space character is not a digit will default to 0. Empty strings also default
toO.

int Getlnto;

Function GetReal0 reads a string from the console (up to MAXREALPRECISION)
and converts the ascii representation into its double value. All leading
white space (spaces and tabs) are discarded. The conversion stops at the
first character that can not be part of a legel double value. All remaining
characters in the string are discarded. Strings where the first non white-
space character is not a digit will default to 0.0. Empty strings also
default to 0.

double GetReal();

#endif

B. IOSYS.C

Author(s): Scott Book
Project: Yamabico Robot Control System
Date: December 8, 1993
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Revised: March 2, 1994
File Name: iosys.c
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains the routines and data structures needed to

provide VO capabilities to the rest of the subsystems in the
Yamabico project. This file contains two marked sections. The
first is the private section containing the encapsulated data
and functions. The second section is the public section. This
section defines the interface routines.

#include "definitions.h"
#include "convertutil.h"
#include "serial.h"
#include "iosys.h"

PRIVATE SECTION

The following section defines the encapsulated definitions and data
structures used in the system.

#define BUFSIZE 1024

Structure and declaration of the output buffer. It is declared static to
prevent access from routines external to this module.

typedef struct{
int Head;
int Tail;
int Count;
char BuffeqBUFSIZE];

)IOBUFFER;

static IOBUFFER OutputBuf;

PUBLIC SECTION
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The following section defines the functions that provide access to the
terminal system.

Function loSyslnitialize0 initializes the ports used for serial communications.
The CONSOLE port is set for interrupt driven output, but direct memory (polled)
input. The output buffer is also initialized.

void loSyslnitializeo{
OutputBuf.Head = 0;
OutputBuf.Tail = 0;
OutputBuf.Count = 0;

}

Function loSysControl() controls the printing of characters in the output
buffer to the screen. It is called from the interrupt handling routine. It
operates by printing one character to the screen and then terminating the
interrupt. The act of printing a character to the screen generates driother
interrupt to print the next character in the buffer. If the buffer is empty,
it sends a command to the port to stop the interrupt chain.

void loSysControl(){

if(OutputBuf.Count > 0){
PutConsole(OutputBuf.Buffer[OutputBuf.Taiq);
OutputBuf. Count--;
if(OutputBuf.Tail == BUFSIZE-1){

OutputBuf.Tail = 0;
)else

OutputBuf.Tail++;
)else

TerminateConsoleOutputO1;
TerminateConsolelntCycleo;

Function PutStr copies the string pointed to by Source into the output buffer.
A critical region exists where the number of characters in the output buffer
is incremented. Therefore, the priority mask is set to prevent any interrupts
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from taking control of the CPU during its execution.

void PutStr(char* Source){
while (*Source I- '\0'){

OutputBuf.Count++;

OutputBuf.Buffer[OutputBuf.Head] * 'Source;
Source++;
if(OutputBuf.Head -- BUFSIZE-1){

OutputBuf.Head - 0;
)else

OutputBuf.Head++;

P Initiate an output interrupt by sending a null character to the console. °/
PutConsole(V0');

Function PutInt converts the parameter Number tc it! :!! r prsee.ation and
sends the resulting string to the console by calling to PutStr.

void Putlnt(int Number){
char NumStrq20];

ItoA(Number,NumStr);
PutStr(NumStr);

Function PutReal converts the exponential notation of the parameter Number
into its ascii representation. It then sends the resulting string to the
console by calling PutStr.

void PutReal(double Number, int Places){
char NumStr[MAXREALPRECISION+7];

if(Places<MAXREALPRECISION)(
RtoAE(Number,NumStr,Places+1);

)else{
RtoAE(Number,NumStr,MAXREALPRECISION+1);

}
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PutStr(NumStr);
}

Function GetStro copies the string of characters typed at the console (up to
Length characters) into the string pointed at by Source.

void GetStr(char" Source, int Length){
BYTE KeyStroke;
int I = -1;
int Size = Length - 1;

do{
KeyStroke = GetConsoleo;

switch(KeyStroke){
case '\b':

if(I >= 0){
I--;
PutConso~e(KeyStroke);

)
break;

default:
Source[++I1 = KeyStroke;
PutConsole(KeyStroke);

}
)while((Source[l] I- Vr') && (I < Size));

Source[l] = W;

Function Getlnto reads a string from the console (up to MAXINTEGERDIGITS)
and converts the ascii representation into its integer value. All leading
white space (spaces and tabs) are discarded. The conversion stops at the
first character that can not be part of a legel integer value. All remaining
characters in the string are discarded. Strings where the first non white-
space character is not a digit will default to 0. Empty strings also default
to 0.

int GetlntO{
char NumStr[MAXINTEGERDIGITS+1];
char* Temp = NumStr;
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GetStr(NumStr,MAXINTEGERDIGITS+1);

while((*Temp=t') 11 (*Temp==' '))
Temp++;

return Atol(Temp);

Function GetReal() reads a string from the console (up to MAXREALPRECISION)
and converts the ascii representation into its double value. AJI leading
white space (spaces and tabs) are discarded. The conversion stops at the
first character that can not be part of a legel double value. All remaining
characters in the string are discarded. Strings who:re the first non white-
space character is not a digit will default to 0.0. Empty strings also
default to 0.

double GetReal0{
chai NumStr[MAXREALPRECISION+1];
char* Temp = NumStr;

GetStr(NumStr, MAX_REAL_PRECISION+1 );

while((*Temp==t') II (*Temp==''))
Temp++;

return AtoR(Temp);
7
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APPENDIX C

A. MOTION.H

Author(s): Scott Book
Project: Yamabico Robot Control System
Date: December 16, 1993
Revised: March 2, 1994
File Name: motion.h
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains the prototypes/interface for the functions

available in the Motion System module. The first two routines
are for system setup and control. The rest are MML's immediate
commands defined by the language.

#ifndef _MOTION_H

#define _MOTION_H

#include "definitions.h"

Function MotionSyslnitializeo initializes the motion subsystem by assigning
default values to the loc'al variables and establishing the interrupt handling
mechanism.

void MotionSyslnitializeo;

Function MotionSysControl0 is the interrupt handler workhorse and is called
from the assembly interrupt handler shell.

void MotionSysControl0;

The following declarations are prototypes for MML's immediate commands.

The command descriptions can be tound in the MML Bible.

void Set RobotConf iguration(CON FIGU URATION NewConfiguration);

void GetRobotConfiguration(CONFIGU RATION CurrentConfiguration);

void Stopo;
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void SetLinearVelocity(double LinearVelocity);

void SetRotationalVelocity(double RotationalVelocity);

void SetLinearAcceleration(double LinearAcceleration);

void SetRotationalAcceleration(double RotationalAcceleration);

void Set SizeConstant(double SizeConstant);

double GetTotalDistanceo;

void SkipPathElement0;

void HaftMotiono;

void ResumeMotiono;

CONFIGURATION SetlnitialPositiono;

void ReportRobotConfiguration(CONFIGURATION CurrentConfiguration);

void MotionOno;

void MotionOff0;

#endif

B. MOTION.C

Author(s): Scott Book
Project: Yamabico Robot Control System
Date: December 16, 1993
Revised: March 2, 1994
File Name: motion.c
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file provides the routines and data structures needed to

provide the motion control capability for the robot. The file
is divided into three sections. The first is the private section
containing the encapsulated data and functions. The second
section is the control section. This section defines the
routines required for motion control. The third section is the
Immediate command section. This section defines MML's immediate
commands. The routines in these last two sections can be
accessed publicly.

#include "definitions.h"
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#include =system.h"
#include "iosys.h"
#include "wheels.h"
#include "math.h"
#include "math68881 .h"
#include "motiontrace.h"
#include =motion.h"

PRIVATE SECTION

The following section defines the encapsulated definitions, data structures
and prototypes used in the system.

#define SMALLERROR 0.0001

static int LoopTest;

static BOOLEAN Halted;

static VELOCITY HattedVelocity;
static VELOCITY DesiredVelocity;
static VELOCITY Commanded;
static VELOCITY DesiredAcceleration;

static double TotalDistance;

static double DesiredSizeConstant;

static CONFIGURATION VehicleConfiguration;

The following static function declarations are the prototypes for the
encapsulated functions.

static void UpdateConfiguration(double DeltaDistanceChanged,
double DeltaOrientation);

static VELOCITY GetCommandedVelocity(VELOCITY Desired,
VELOCITY Actual,
VELOCITY Commanded);

static double GetLinearVelocity(double DesiredVelocity.
double ActualVelocity,
double LastCommandedVelocity);
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Function UpdateConfiguration() calculates the robots current position based
on DeftaDistanceChanged (ds) and DeltaOrientation (dt).

static void UpdateConfiguration(double DeltaDistanceChanged,
double DeltaOrientation)(

double Distance Increment = DeltaDistanceChanged;
double OrientationIncrement = DeltaOrientation / 2;

Disable Interruptso;

if (fabs(DeftaOrienitation) > SMALLERROR)
Distance Increment *= sin(Orientationincrement) / Orientationlncroment;

VehicleConfiguration. Position.XPosition += Distance Increment *
cos(VehicleConfiguration.Orientation + OrientationIncrement);

VehicleConfiguration. Position.YPosition += Distance Increment *
sin(VehicleConfiguration.Orientation + Orientation Increment);

VehicleConfiguration.Orientation += DeltaOrientation;
if(fabs(DeltaDistanceChanged) > SMALLERROR){

VehicleConfiguration.Kappa = DeltaOrientation / DeltaDistanceChanged;
)else(

VehicleConfiguration.Kappa = DeltaOrientation / SMALLERROR;

Enablelnterruptso;

Function GetCommanded Velocity() calculates the commanded velocity based on
the current velocity, the desired velocity, and the previous commanded
velocity.

static VELOCITY GetCommandedVelocity( VELOCITY Desired,
VELOCITY Actual,
VELOCITY Commanded)[

Commanded. Linear -
GetLinearVelocity(Desired.Linear,Actual. Linear,Commanded. Linear);

r This statement is used since Get RotationalVelocity() is not '
r, currently defined. Otherwise, a statement similar to above '
rwould be used. '
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Commanded.Rotational = Desired.Rotational;

return Commanded;
}

Function GetLinearVelocity0 calculates the linear component of the commanded
velocity.

static double GetLinearVelocity(double DesiredVelocity,
double ActualVelocity,
double CommandedVelocity){

double VelocityChange;

VelocityChange = DesiredAcceleration.Linear * MOTIONCONTROLCYCLE;

if(ActualVelocity < DesiredVelocity){
CommandedVelocity - Min(CommandedVelocity + VelocityChange, DesiredVelocity);

)else{
Commanded Velocity = Max(CommandedVelocity - VelocityChange, DesiredVelocity);

return Commanded Velocity;

MOTION CONTROL SECTION

The following section defines the functions that provide access to the
motion control system. These routines are public.

*t*.....***e*..*.e*e.eeeeeee..* ee..*.........e*...*.ee *...e*.fle.e* * . ** et et •

Function MotionSyslnhialize0 initializes all of the private global variables
in this module to the desired default values. It then calls SetTimer to
program the 5th timer on serial board #1 (the second serial board) to generate
synchronous interrupts every 1 Oms. After the timer has been set up, the
interrupt handling routine is made available to the system by the call to
SetMotionlnterruptHandlero.

void MotionSyslnitializeo{
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LoopTest = 0;

Halted - FALSE;

TotalDistance = 0.0;

DesiredVelocity.Linear = 0.0;
DesiredVelocity.Rotational = 0.0;
Commanded.Linear = 0.0;
Commanded.Rotational = 0.0;
DesiredAcceleration.Linear = 20.0;
DesiredAcceleration.Rotational = 0.5;
DesiredSizeConstant = 20.0;

VehicleConfiguration.Position.XPosition = 0.0;
VehicleConfiguration.Position.YPosition = 0.0;
VehicleConfiguration.Orientation = 0.0;
VehicleConfiguration.Kappa = 0.0;

/* Initialize sub-systems. */
InitializeWheelso;

TraceMotionSyslnitialize(400); P This sub-system only required if data */
/* logging is desired. *1

SetMotionlntMechanism0;
)

Function MotionSysControl() is the interrupt handler workhorse. It is called
from the assembly interrupt handler shell. Its first task is to update the
change in position and orientation through calls to the module responsible for
movement. It then uses this information in the motion control laws to derive
the commanded linear and rotational velocities required for this motion
control cycle. Finally, it passes these computed velocities back to the move-
ment module for execution.

void MotionSysControl(){
double OrientationChange;
double DistanceChanged;
VELOCITY Actual;

UpdateMovementO;
DistanceChanged - Get DistanceTraveled0;
OrientationChange = GetOrientationChange0;

TotalDist-nce +_ DistanceChanged;
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UpdateConfiguration(DistanceChanged,OrientationChange);

Actual.Linear = DistanceChanged / MOTIONCONTROLCYCLE;
Actual.Rotational = OrientationChange / MOTIONCONTROLCYCLE;

/* The logging statement can be moved, modified or deleted as desired. */

LogTimedMotion(Actual.Linear);

Commanded = GetCommandedVelocity(DesiredVelocity,Actual,Commanded);

SetMovement(Commanded.Linear,Commanded.Rotational);

r LoopTest used to control output from interrupt driven motion control /
r system. LoopTest is assigned zero every 100 cycles (1 sec).
if(LoopTest++ >= 99)

LoopTest = 0;

IMMEDIATE COMMAND SECTION

The following section defines the functions that provide access to MML's
immediate commands. The functionality of these routines can be found in the
language definition. These routines are also public.

void SetRobotConfiguration(CONFIGURATION NewConfiguration){
Disable Interruptso;

VehicleConfiguration.Position.XPosition = NewConfiguration.Position.XPosition;
VehicleConfiguration. Position.YPosition = NewConfiguration.Position.YPosition;
VehicleConfiguration.Orientation = NewConfiguration.Orientation;
VehicleConfiguration.Kappa = NewConfiguration.Kappa;

Enablelnterruptso;
}

void GetRobotConfiguration(CONFIGU RATION* Cu rrentConfiguration)(
Disable Interruptso;
*CurrentConfiguration = VehicleConfiguration;
Enable I nterruptso;

}
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void Stopo{
WheelsDisableo;
DesiredlVelocit.Linear - 0.0;
DesiredlVelocity. Rotational = 0.0;

void SetLinearVelocity(double LinearVelocity)(
DesiredlVelocity. Linear = LinearVelocity;

void SetRotationalVelocity(double RotationalVelocity){
DesireclVelocity. Rotational - RotationalVelocity;

I

void SetLinearAcceleration(double LinearAcceleration){
DesiredAcceleration.Linear - LinearAcceleration;

void SetRotationalAcceleration(double RotationalAcceleration){
DesiredAcceleration. Rotational - RotationalAcceleration;

void SetSizeConstant(double SizeConstant){
DesiredSizeConstant - SizeConstant;

I

double GetTotalDistanceo{
return TotalDistance;
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void SkipPathElementof
PutStr("\nnsidle skip() stub");

void HattMotiono{
ff(tHalted){

Hafted = TRUE;
HaftedVelocity.Linear - DesiredlVelocity.L-inear;
H aftedlVelocity. Rotational = DesiredVelocity.Rotational;
WheelsDisableo;

void ResumeMotiono{
if(Hafted)(

Hafted = FALSE;
Desired Velocity.Linear =Halted Velocity. Linear;
Desired Velocity.Rotatiorial = HaftedVelocily .Rotational-,
WheelsEnableo;

CONFIGURATION SetlInitialPositiono{
CONFIGURATION NewConfiguration;

PutStr("\nEnter the Starting X Position: U);

NewCont iguration.Position .XPosition = GetRealO;
PutStr("Enter the Starting Y Position: ");
NewConf igu ration. Position.YPosition - GetReal();
PutStr("Enter the Starting Orientation: ");
NewCant iguration.Orientation = GetRealO);
PutStr("Enter the Starting Kappa Value:U)
NewCanf igu ration.Kappa - GetRealO);

return NewConfiguration;
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void ReportRobotConfiguration(CONFIGURATION CurrentConfiguration){
PutStr("\nCurrent Robot Configuration:\n\tX =>t\t");
PutReal(CurrentConfiguration.Position.XPosition,4);
PutStr(urn\tY n>\tfti);
PutReal(CurrentConfiguration.Posetion.YPosition,4);
PutStr("\n\tTheta =>V");
PutReal(CurrentConfiguration.Odentation,4);
PutStr(C\n\tKappa ->\t1);
PutReal(CurrentConfiguration .Kappa ,4);

void MotionOno{
WheelsEnableo;

)

void MotionOff0{
WheelsDisable0;

}

C. MOTIONTRACE.H

Author(s): Scott Book
Project: Yamabico Robot Control System
Date: January 20, 1994
Revised: March 3, 1994
File Name: motiontrace.h
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains the prototypes/interface for the functions

available to log motion control data.

#ifndef _MOTIONTRACE_H
#define _MOTIONTRACE_H

Function TraceMotionSyslnitialize() prepares the tracing system to log data.
It requests a block of dynamic memory to store the number of data points
requested by NumberOfPoints. No error checking for dynamic memory allocation
Is performed by this function.
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void TraceMotionSyslnitialize(int NumberOf Points);

Function MotionTrace Enable0 enables data logging. Frequency is used by the
system's logging functions to determine the number of motion control cycles
between logged data. For example, if the frequency is 3, then data would be
logged on every third call to LogTimedMotion0 or LogMotionData0.

void MotionTraceEnable(int Frequency);

Function MotionTraceDisable0 disables data logging.

void MotionTrace DisableO;

Function LogTimedMotion0 logs Data against time in seconds, starting when
data logging is turned on. This is based the assumption that the routine is
called every motion control cycle. The Frequency value given when logging is
enabled determines the number of number of LogTimedMotion0 calls required
between recorded data.

void LogTimedMotion(double Data);

Function LogMotionData0 logs both parameters after every 'Frequency' calls.

void LogMotionData(double XPIot, double YPlot);

Function DownLoadMotionData) prompts the user for a file name on the host
system to store the data. The file then opened, deleting any previous
contents. The routine then transfers character string representations of the
recorded data to the Unix host.

void DownLoadMotionDataO;

#endif
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D. MOTIONTRACE.C

Author(s): Scott Book
Project: Yamabico Robot Control System
Date: January 20, 1994
Revised: March 3, 1994
File Name: motiontrace.c
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains the routines required to for the tracing

system. The file is seperated into two section. The first is
the private section containing the encapsulated data and
functions. The second section is the public section. This
section defines the interface routines.

#include "definitlons.h"
#include "memsys.h"
#include "convertutil.h"
#include "seral.h"
#include "iosys.h"
#include "motiontrace.h"

PRIVATE SECTION

The following section defines the encapsulated definitions, data structures
and prototypes used in the system.

typedef struct{
double XData;
double YData;
SAMPLINGPOINT;

static SAMPLINGPOINT *MotionData;

static int MaxDataPoints;
static int NextPlot;
static int LoggingData;
static int CycleCounter;
static int LoggingFrequency;

The following static function declarations are the prototypes for the
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encapsulated functions.

static void PutStrHost(char* Source);

Function PutStrHost0 is a simple routine that writes a character string to
the host environment. Writing non-character information to the host
environment may produce unexpected results. Other routines may be created to
write non-character data by converting the data to character strings prior
to being sent.

static void PutStrHost(char' Source){
while (*Source I= '\O'){

PutHost(*Source);
Source++;

}

PUBLIC SECTION

The following section defines the functions that provide access to the
tracing sub-system.

Function TraceMotionSyslnitialize0 prepares the tracing system to log data.
It requests a block of dynamic memory to store the number of data points
requested by NumberOf Points. No error checking for dynamic memory allocation
is performed by this function.

void TraceMotionSyslnitialize(int NumberOfPoints){
NextPlot = 0;
LoggingData . FALSE;
CycleCounter = 0;
LoggingFrequency = 1;
df(NumberOfPoints > 0)

MaxDataPoints - NumberOfPoints;
else

MaxDataPoints - 0;
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free((BYTE*)MotionData);
MotionData = (SAMPLINGPOINT*)malloc(sizeof(SAMPLINGPOINT)*NumberOfPoints);

Function MotionTraceEnable0 enables data logging. Frequency is used by the
system's logging functions to determine the number of motion control cycles
between logged data. For example, if the frequency is 3, then data would be
logged on every third call to LogTimedMotiono or LogMotionDatao.

void MotionTraceEnable(int Frequency)(
if(Frequency > 0)

LoggingFrequency = Frequency;
else

LoggingFrequency = 1;

LoggingData = TRUE;

Function MotionTraceDisable0 disables data logging.

void MotionTraceDisableo{
LoagingData = FALSE;

Function LogTimedMotion0 logs Data against time in seconds, starting when
data logging is turned on. This is based the assumption that the routine is
called every motion control cycle. The routine uses the variable CycleCounter
as a counter. When the value of CycleCounter reaches zero, data is logged and
the counter is reset to the LoggingFrequency set when logging was enabled. If
the value is greater than zero, the counter is decremented and logging is NOT
performed.

void LogTimedMotion(double Data){
if(LojgingData){

if((CycleCounter- <- 0) && (NextPlot < MaxDataPoints)){
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MotionData[NextPtot].XData = NextPlot * LoggingFrequency
* MOTIONCONTROL_CYCLE;

MotionData[NextPlot].YData = Data;
NextPlot++;
CycleCounter = LoggingFrequency;

)

Fucntion LogMotionData0 records both parameters when the CycleCounter is
zero. It then resets the counter to LoggingFrequency, assigned when logging
is enabled. If the value is greater than zero, the counter is decremented and
logging is NOT performed.

void LogMotionData(double XPlot, double YPlot){
if(LoggingData)(

if((CycleCounter-- <= 01 && (NextPol < MaxDatarFoiits)).
MotionData[NextPtot].XData = XPIot;
MotionData[NextPlot].YData = YPIot;
NextPlot++;
CycleCounter = LoggingFrequency;

}
I

Function DownLoadMotionData0 prompts the user for a file name on the host
system to store the data. The file then opened, deleting any previous
contents. The routine is dependent on the "ytof call in the yamabico
account. The routine then transfers character string representations of the
recorded data to the Unix host. Afterwards, the function ensures that the
host file is closed.

void DownLoadMotionDatao0
char FileName[35];
char DataString[MAXREALPRECISION];
int Loop'n2u.•nter - MaxDataPoints;

MotionTraceDisableo;

PutStr('•n\n\aReady to down load motion data. Connect the');
PutStr(,ncable and press any key to continue.");
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GetConsoleo;

PutStr('\a\n\nEnter the name of the Host file used to store the Motion Data");
PutStr('fn(WARNING: PREVIOUS FILE CONTENTS WILL BE DESTROYED)");
PutStr('\n\n\t File: ");
GetStr(FileName,35);

PutStrHost("ytof ");
PutStrHost(FileName);
PutStrHost(" w \n-);

PutStr('\n\n\aReady to nown load data to Host computer. );
PutStr('\nPress any key to begin -);
GetConsoleO;

PutStr("rn\nDown loading data...');

for(LoopCounter=0; LoopCounter<MaxDataPoints; LoopCounter++){
PutStrHost(RtoAE(MotionData[LoopCounter].XData,DataStnng,5));
PutStrHost(Ct");
PutStrHost(RtoAE(MotionData[LoopCounter].YData,DataStnng,5));
PlutStrHosi('\n p;

)

PutHost(M');
PutHost('\4');

PutStr("\aDown load complete");

E. WHEELS.H

Author(s): Scott Book
Project: Yamabico Robot Control System
Date: December 16, 1993
Revised: March 2, 1994
File Name: wheels.h
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains the prototypes to available wheel sub-system

routines. This set of prototypes defines the wheel sub-system
interface.

#ifndef ._WHEELS_H

#define _WHEELS_H

#include kdefinitions.h"
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#define MAXVELOCITY 60

Function InitializeWheels0 initializes the wheels subsystem to its default
settings.

void InitializeWheelso;

Function WheelsEnableO turns on the motors connected to the wheels.

void WheelsEnableO;

Function WheelsDisableo turns off the motors connected to the wheels.

void WheelsDisableo;

Function UpdateMovement0 updates the distance traveled by both wheels.

void UpdateMovemento;

Function GetDistarceTraveled0 returns the linear distance the robot has
traveled between the last two calls to UpdateMovemento.

double GetDistanceTraveledo;

Function GetOrientationChange0 returns the difference between the changes
in the distawae of the left and right wheels between the last two calls to
UpdateMovemento.

double GetOrientationChangeo;

Function SetMovement0 translates the commanded linear and rotational vel-
ocities into commanded velocities for each wheel.

void Set tveNment(double LinearVelocity, double RotationalVelocity);

#endi
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F. WHEELS.C

Author(s): Scott Book
Project: Yamabico Robot Control System
Date: December 17, 1993
Revised: March 2, 1994
File Name: wheels.c
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file defines the wheel sub-system. It contains the hardware

interface routines required for operation with the Dual Axis
Controller. The file is seperated into two section. The first
is the private section containing the encapsulated data and
functions. The second section is the public section. This
section defines the interface routines.

#include "definitions.h"
#include "wheels.h"

PRIVATE SECTION

The following section defines the encapsulated definitions, data structures
and prototypes used in the system.

#define RIGHT-DRIVE -**************W, .*. *0xeef

#define RIGHT_DRIVE_PWM 0xfffffO00
#define RIGHTBRAKEPWM Oxfffff002
#define LEFTDRIVEPWM 0xfffff004
#define LEFTBRAKEPWM 0xfffff006

#define MOTIONCONTROLADDRESS O0xfffff08

#define RIGHTENCODERHIGHWORD 0xtfftf010
#define RIGHTENCODER_LOWWORD 0xfffff012
#define LEFTENCODERHIGHWORD Oxfffff014
#define LEFT_ENCODERLOWWORD 0xfffft0 6

#define TREAD 52.41246478129945756620
#define TREADR 53.40092 r width of the robot (cm) when rotating. */

#define ENCTODIST 0.00105570833333333333

93



#define KPWB 10.0

/* Assumed PWM range: 0..127. Set at 90 to allow testing on weak AC generator. */
/ Can be changed to 127 if generator not used or upgraded.
#define PWMLIMIT 90

static int MotorOn;
static BOOLEAN Rotating;

static int RightEncoderValue;
static int LeftEncoderValue;
static int DeltaRightEncoderValue;
static int DeltaLeftEncoderValue;

static double Rpwm;
static double Lpwm;
static WORD MotionControlWord;

The following static function declarations are the prototypes for the
encapsulated functions.

static int GetWheelEncoder(LONG HighWordAddress, LONG LowWordAddress);
static int EncoderDifference(int NewValue, int OldValue);
static int GetPwm(double CommandedVelocity, double ActualVelocity, double Pwm);
static double PwmLookUp(double Velocity);
static void SetMotorControl(int Lpwm, int Rpwm, int MotionControlWord);

Function GetWheelEncoder0 appends the contents of the shaft encoder low
word register to the contents of the high word register, forming a long
word. It then returns that value.

static int GetWheelEncoder(LONG HighWordAddress, LONG LowWordAddress){
LONG Wheel;

Wheel - *(WORD')HikhWordAddress;
Wheel = Wheel << 16;
Wheel +- *(WORD*)LowWordAddress;

return Wheel;
}
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Function EncoderDiffea.ce() returns the difference between the new shaft
encoder position and the old shaft crncoder posittion. The shaft encoder values
contain only 24 bits (OxOOOOOO-OxfffffU). The routine adjusts for the trans-
ition from Oxffffff to OxO0OOQO and vice versa.

static int EncoderDifference(int NewValue, int OIdValue){
int Difference = NewValue - OldValue;

if (Difference < -0x800000){
Difference = Difference & Ox00ffffff;

}else if(Difference >= 0x800000){
Difference = Difference I Oxff000000;}

return Difference;
}

Function GetPwm0 returns a new PWM value based on the desired velocity,
the actual velocity and the old PWM value.

static int GetPwm(double CommandedVelocity, double ActualVelocity, double Pwm){
double a = 0.7;
int PwmTemp = PwmLookUp(CommandedVelocity) + KPWB *

(CommandedVelocity - ActualVelocity);

return (a * PwmTemp + (1.0 - a) * Pwm);
}

Function SetMotorControl() sends the PWM values to the motor control board
if the motors are turned on via a previous call to MotorEnable0. If the
motors are not turned on, then a command to free the motors is sent.

static void SetMotorControl(int Lpwm, int Rpwm, int MotionControlWord){
if(MotorOn){

"*(WORD°)LEFT DRIVEPWM = (WORD)Lpwm;

(WORD*)RIGHTDRIVEPWM = (WORD)Rpwm;
-(WORD°)MOTIONCONTROLADDRESS = (WORD)MotionControlWord;
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)else{
*(WORD*)MOTIONCONTROLADDRESS = 0x0303;

}

FUNCTION: pwm_lookup
PARAMETERS: vel (wheel velocity)
PURPOSE: Determines the estimated pwm ratio given

the desired wheel velocity as an input. (This table get from 7.9 KHZ
motor output curve).

RETURNS: pwm value based upon empirically determined velocity
vs pwm ratio curve.

CALLED BY: control()
CALLS: none
COMMENTS: 12 Jan 93 - Dave MacPherson,16 Sep 1993 changed by Ten-Min Lee
TASK: Level 4 interrupt

static double PwmLookUp(double Velocity){
double v;
double pwmvalue;

v = Velocity;
if (v == 0.0)

pwm value = 0.0;
else 0f (v >= 0.0 && v < 25.0)

pwmryvahe = (0.96 * v + 49.0);
else if (v >= 25.0 && v < 53.0)

pwmr_value = (0.82 * (v - 25.0) + 73.0);
else if (v >= 53.0 && v <= 65.0)

pwm..value = (2.0 * (v - 53.0) + 96.0);
else if (v > 65.0)

pwm_value = 127.0;
else if (v < 0.0 && v >= - 2.5)

pwm...value = (1.2 (v) - 54.0);
else if (v < -2.5 && v ,= -13.0)

pwmffvalue = (0.76 * (v + 2.5) - 57.0);
else if (v < -13.0 && v >= -20.0)

pwm -value = (0.43 * (v + 13.0) - 65.0);
else if (v < -20.0 && v >= -34.0)

pwm.._value - (1.0 * (v + 20.0) - 68.0);
else if (v < -34.0 && v >- -41.0)

pwmrvalue - (0.7 * (v + 34.0) - 82.0);
else if (v < -41.0 && v >= -49.0)

pwrn.value - (1.5 * (v + 41.0) - 87.0);
else if (v < -49.0 && v >= -62.0)

pwmvalue = (1.1 * (v + 49.0) - 99.0);
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else if (v < -62.0 && v >= -65.0)
pwm value = (2.3 * (v + 62.0) - 113.0);

else
pwm value = -127.0;

retrunt pw-n_value;
)r end pwmjookup /

PUBLIC SECTION

The following section defines the functions that provide access to the
wheel sub-system.

Function InitializeWheelso initializes all of the private global variables
in this module to the desired default values.

void InitializeWheelso{
WheelsDisable Q;
Rotating . FALSE;

Rpwm = 0.0;
Lpwm = 0.0;
MotionControlWord = 0;

DeltaRightEncoderValue = 0;
DeltaLeftEncoderValue = 0;

RightEncoderValue
GetWheelEncoder(RIGHTENCODERHIGHWORD,RIGHTENCODERLOWWORD);

LeftEncoderValue
GetWheelEncoder(LEFTl"ENCODERHIGHWORD,LEFTENCODERLOWWORD);}

Function WheelsEnableo turns on the motors connected to the wheels.
This is done by setting the MotorOn flag, used by SetMotorControl0, to
a non-zero value.

void WheelsEnableO{
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MotorOn= 1;
}

Function WheelsDisable() turns off the motors connected to the wheels.
This is done by setting the MotorOn flag, used by SetMotorControl(), to
zero.

void WheelsDisableo(
MotorOn = 0;

Function UpdateMovement0 updates the distance traveled by both wheels. It
does this by calculating the difference between the current shaft encoder
values and the encoder values from the last time they were read. It also
stores the current encoder values which will be used as the last encoder
values when this routine is called again.

void UpdateMovemento(
int Wheel;

Wheel
GetWheelEncoder(RIGHTENCODERHIGHWORD,RIGHTENCODERFLOWWORD);

DeltaRightEncoderValue = EncoderDifference(Wheel, RightEncoderValue);
RightEncoderValue = Wheel;

/* The left motor is the mirror image of the right. Therefore the */
r amount of change in the left encoder value needs to be negated "/
/* to show the proper direction of rotation. */

Wheel
GetWheelEncoder(LEFTENCODER_H!GHWORD,I EFTENCODERLOWWORD);

DeltaLeftEncoderValue = - EncoderDifference(Wheel,LeftEncoderValue);
LeftEncoderValue - Wheel;}

Function GetDistanceTraveled0 returns the linear distance the robot has
traveled between the last two calls to UpdateMovemento. It makes the
calculations based on the measured center point between the two wheels by
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taking the average change between them.

double GetDistanceTraveledo(
dc-ble DistanceRight;
double DistanceLeft;

DistanceRight = (double)DeltaRightEncoderValue * ENC TO DIST;
DistanceLeft - (double)DeltaLeftEncoderValue * ENCTODIST;

return ((DistanceRight + DistanceLeft) / 2.0);
)

Function GetOrientationChange0 returns the difference between the changes
in the distance of the left and right wheels between the last two calls to
UpdateMovemento. It makes the calculations based on the center point between
the two wheels. MMLI0 made a distinction based on whether the robot was
rotating or not when calculating the cer 'er point between the wheels. This
distinction is included in this routine.

double GetOrientationChangeo{
double DistanceRight;
double DistanceLeft;
double OrientationChange;

DistanceRight - (double)DeltaRightEncoderValue * ENC TO DIST;
DistanceLeft - (double)DeltaLeftEncoderValue * ENCTODIST;

if(Rotating){
OrientationChange - (DistanceRight - DistanceLeft) / TREADR;

)else{
OrientationChange (DistanceRight - DistanceLeft) / i riEAD;)

return OdentationChange;
)

Function SetMovemantO translates the commanded linear and rotational vel-
ocities into commanded velocities for each wheel. It then calculates the PWM
values for each wheel and calls SetMotorControl() to execute PWM commands.
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void SetMovement(dlouble Linear~elocity, double Rotational Velocfty)f
double RtightWheel Velocity;
double LeftWheelVelocfty;
double CommandRightVelocity;
doubla CommandLeftVelocity;
double Tread2;
int RtpwmTemp;
int LpwmTemp;

RightWheelVelocfty = DeltaRightEncoderValue ENCTODIST
MOTIONCONTROL_-CYCLE;

LeftWheel~elocfty = eftaLeftEncoderValue ENCTODIST
MOTIONCONTROLCOYCLE;

if(Rotating){
Tread2 =0.5 *TREAD_R;

)else(
Tread2 =0.5 * TREAD;

}omn~f~lct iereofy-(ra2*Rttoa~lct)
Command~ieftVelocity = LinearVelocity + (Tread2* RotationalVelocity);

LpwmTemp =GetPwm(CommandLeftVelocity, Left WheelVelocity, Lpwm);
RpwmTemp =GetPwm(ComoiandRiguikVelocfty, RightWheelVelocity, Rpwm);

Lpwm =LpwmTemp;

Rpwm =RpwmTemp;

MotioncontroiWord - (MotionControiWord & WOWff)
((LpwmTemp->O) ? 1 :2)1
((RpwmTemp > 0) ? Oxi1OC WOO0);

if{RpwmTemp > FWMLIMIT){
RpwmTemp - PWMLIMIT;

)else if(RpwmTemp < -PWMLIMIT){
RpwmTemp - -PWMLIMI~

if(LpwmTemp > PWMLIMIT){
LpwrrTemp = PWMLIMIT;

)else if(Lpwm rfemp < -PWMLIMIT){
LpwmTemp = -PWMLIMIT;

SetMotorControl(LpwmTenip, RpwmTemp, MotionControlWord);
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APPENDIX D

A. USERoH

Author(s): Scott Book
Project: Yamabico Robot Control System
Date: December 8, 1993
Revised: March 4, 1994
File Name: user.h
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains prototype for USERO. This is not required

by the current implementation of the new MML system since user
and kernel are two seperate object modules that are loaded at
seperate locations. However, if the modules are combined in the
future, main() can call USERO directly instead of userO. The
prototype would then be required.

#ifndef _USER_H

#define _USER_H

Function USER() is the user system program that receives control from mainO
after the robot's sub-systems have been initialized.

void USERO;

#endif

B. USER.C

Author(s): Scott Book
Project: Yamabico Robot Control System
Date: December 8, 1993
Revised: March 4, 1994
File Name: user.c
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file contains a sample user program that can be used with

the new MML system created using ANSI C. The purpose of this
program is to provide an interactive menu system to control the
robot using immediate commands only. It was also used to test
the Implementation of the immediate commands. Since the user
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module is loaded at 0x334000, USERO must be the first function
defined.

#include "definhions.h"
#include uiosys.h"
#include "serial.h"
#include "motion.h"
#include "motiontrace.h"
#include "compatability.h"
#include "user.h"

#define ESC Oxl b

The following section presents the prototypes for the encapsulated function(s)
in this module.

static void bodyo;

PUBLIC SECTION

The following section defines the publicly accessible USERO routine that
is called from maino.

Function USER() is essentially a shell routine that calls bodyo. The reason
for this approach is to prevent the compiler from changing the starting
address of USERO by storing variables and/or strings before the routine.

void USER({
bodyo;

PRIVATE SECTION

The following section defines the encapsulated function definition(s) used
within this module.
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Function body() is the work horse routine of this user program. It provides
the menu system to interact with MML's immediate commands. The routine
purposely uses the older MML-10 commad calls in order to demonstrate use of
the compatability macros defined in compatability.h

static void bodyo{
int wait;
char KeyBoardHit;
CONFIGURATION VehicleConfiguration;

KeyBoardHit = 0;

motionono;

do{
PutStr('WnHit: ESC to Terminate Program");
PutStr('\n C to Change Robot's Configuration 1);
PutStr('\n R to Report Robot's Current Configuration U);

PutStr("\n v to Change Linear Velocity");
PutStr('ýn r to Change Rotational Velocity U);

PutStr("\n a to Change Linear Acceleration");
PutStr("\n b to Change Rotational Acceleration ");
PutStr("'n S to Change the Size Constant ");
PutStr("\n s to Skip the next Sequential Instruction U);

PutStr("n h to Haft the Robot ");
PutStr("wn c to Resume the Robot 1);
KeyBoardHit - GetConsoleO;
PutConsole(KeyBoardHit);

switch(KeyBoardHit)(
case ESC:

stopo0;
PutStr("\n\nThe Total Distance Traveled is: ");

PutReal(pathjlength0,4);
break;

case 'C':
S.ý,t-rob0(~get-initial-position());

break;
case 'R':

getjrob0(&VehicleConfiguration);
report_.configuration(VehicleConfiguration);
break;

case 'v':
PutStr("•a\n\nEnter Desired Linear Velocity: U);

speedO(GetReal0);
MotionTraceEnable(3); r Log the data every 3 Motion Control Cycles. °/
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break;
case 'r:

PutStr("Wa\n\nEnter Desired Rotational Velocity: ");
rspeedO(GetReal0);
break;

case 'a':
PutStr("\a\n\nEnter Desired Linear Acceleration: ");
accO(GetReal0);
break;

case 'b':
PutStr('\a\n\nEnter Desired Rotational Acceleration: ");

raccO(GetReal0);
break;

case 'S':
PutStr("\a\n\nEnter Desired Size Constant: ");

sizeconst(GetRealO);
break;

case 's':
skipo;
break;

case h:
halto;
break;

case 'c':
resumeo;
break;

default:
break;

)
)while(KeyBoardHit I. ESC);

DownLoadMotionDatao;

PutStr('ýMn~Pmgram Terminated.\a\nan");

motion offo;

for(wait=O; wait<Ox 000; wait++)

C. COMPATABILITY.H

Author(s): Scott Book
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PR�ject: Yamabico Robot Control System
Date: January 18, 1994
Revisel: March 4, 1994
File Name: compatability.h
Environment: GCC ANSI C compiler for the motorola 68020 processor
Description: This file pmvides macros to cc�nvert old MML-1 0 immediate

command calls into the new command calls. This allows user
programs created for MML-10 to be used on the new system.

#ifndet __COMPATABILITYH

#define __COMPATABILITYH

#include "definitions.h"

#include �motion.h

#define set rob0(P) SetRobotConfiguration(P)

#define get rob0(P) GetRobotConfiguration(P)

#define stopo() StopO

#define speedo(P) SetLinearVelocity(P)

#deftne rspeed0(P) SetRotationalVelocity(P)

#define accO(P) SetLinearAcceleration(P)

#define racc0(P) SetRotationalAcceleration(P)

#define size const(P) SetSizeConstant(P)

#define pathjength() GetTotalDistance()

#detine skipO SkipPathEtement()

#define halt() HaltMotion()

#define resumeO ResumeMotion()

#define geLinitial...position() SetJnitialPosition()

#define report configuration(P) ReporlRobotConfiguration(P)

#define motion on() MotionQn()

#define motion otto MotionOff()
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#end.1
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